NOMAD
XRDEV
SOFTWARE
MANUAL

RELEASE 1.0

Nomadic Technologies, Inc.
2133 Leghorn Street

Mountain View, CA 94043-1605
TEL 650.988.7200

FAX 650.988.7201

Email: nomad@robots.com

Rev. Date 3/99

WHERE CAN | GET HELP?

1 By email: send a description of your problem,
if possible with the source program, to: sup-
port@robots.com.

2 By phone: call +1.650.988.7200 and ask for
Technical Support.

WHERE CAN | GET SOFTWARE?

For the convenience of timely software distribution,
Nomadic has set up a web site for this and future
Nomadic software releases. From this FTP site, you
can download the most up-to-date software distrib-
uted by Nomadic. This includes the Nomadic Host
Development Environment, the Nomadic Robot
Control Software, and documentation.

To download software from this FTP site, simply

go to: http://www.robots.com (205.162.4.11) and
click on the Downloads link. Please read the soft-
ware license agreement and click on the “I agree!

Take me to the downloads page!” link.

When prompted for a user name and password, type:

Name: robots Password: NOmadi1C

The ‘0’ is a ZERO and the ‘i’ is a ONE, the letters
‘N’ and ‘C’ are CAPITALIZED. Since the software
is intended to be used by Nomad users only,
please keep the FTP site information confidential.

Once you are logged in, you will come to a page
that lets you select between Host Development
Environment, Robot Control, and Manuals. Select
the appropriate link and download the software
appropriate for your operating system.

If you have any questions regarding how to obtain
or run the software, please email them to: soft-
ware@robots.com.

To order additional copies of this manual or other
manuals, please call +1.650.988.7200 and ask for
the Sales Department.

DISCLAIMER AND WARRANTY
INFORMATION

Thank you for purchasing a Nomadic Technolo-
gies, Inc. product. The Nomad XR4000™ is war-
ranted to the original purchaser (Customer), to be
free from defects in materials and workmanship
for a period of two years for mechanical compo-
nents and one year for electrical components. The
warranty is effective from the shipping date. Dur-
ing this period, Nomadic Technologies, Inc. will
repair or replace, at our discretion, any defective
components.

This warranty does not apply to any Nomad or
Sensus products which have been damaged by
accident, abuse, negligence, improper use, power
surges, acts of God or have been repaired, altered,
or modified in any way by anyone other than
Nomadic Technologies. This warranty does not
apply to the batteries or antennae.

Nomadic Technologies, Inc. expressly disclaims
and excludes all other warranties, express,
implied, and statutory, including without limita-
tion, the warranty of merchantability and fitness
for a particular purpose.

Nomadic Technologies, Inc. expressly disclaims
and excludes all liability for incidental and conse-
guential damages, including lost data. The Cus-
tomer’s maximum entitlement shall in no event
exceed the cash value of the covered item(s) at the
time of the item(s) breakdown.

If you have any questions or problems with your
Nomad or Sensus products contact Nomadic Tech-
nologies Customer Service at +1.650.988.7200 for
instructions.

In the event that service is required, after notifying
Nomadic Technologies and receiving an RMA,
ship your product, together with all accessories, in
its original packaging, fully prepaid and insured,
to Nomadic Technologies, Inc. Nomadic Technolo-
gies, Inc. is not responsible for any damages
incurred during shipping. We will notify you of
repair costs, if they are not covered by the war-
ranty, before undertaking them and will notify you
before return shipping your product. The customer
is responsible for all shipping and shipping insur-
ance costs.

©1999 by Nomadic Technologies, Inc.
CONVENTIONS

Here are the typographical conventions used in this
manual:

1 Typewriter characters denote user input at a ter-
minal, as well as code examples, as in:

machine:Ngui —h myhost —s 65000
2 M is a remark, note, or tip, as in:
M You can have up to 100 robots controlled simul-

taneously from the same GUI.

3 \:b' denotes trouble shooting information, as in:

\:b' The robot does not move.

B |s the emergency stop released?
B Are the batteries in place?

CONTENTS

Where can get help? e 2
Where can | get software? e e 2
Disclaimer and Warranty Information. i e e 2
CONVEN I ONS . .ottt e e e e e e 3
CHAPTER 1: GETTING STARTEDt e e e e e e 6
OV IV B . e e e e e e e 6
RELEASE 1.0 CoNtentsttt ettt e e e et ettt ettt e 6

A SIimple Example. e e e 6
CHAPTER 2: THE XRDEV ARCHITECTURE.ttt e e e et e e 8
Design Featureso e e 8
Processes and Configurations it e e e 8
CHAPTER 3: NROBO T . . ottt e e e e e e e e e e e e e 9
INtrodUCTiON . . .o e 9
XRDev Configuration Optionso vt e e e e 9
Command line OptioNs i i e e e 9
Setup file OpPtioNS. e e e 10
Default Sensor Statesot e e e e 10
Adding New Hardware e 11
troubleshooting e 11
CHAPTER 4: THE GRAPHIC USER INTERFACE e e 12
INIrOdUCTION e e e e 12
Getting Started. e e e e 12
Command Line Optionso et e e e 12
World Window.o e e 12
World Menu Bar. e e e 13

File MenU . .. e e e 13

VieW M ENU . . e e e 13

Panel MenU e e 13

ROboOt Window. . .. o e e e 15
Short Range SeNsOr e e 16

Long Range Sensor. i e e e 16
JOYSiCK .o e e e 16

INfO WiNAOW. . .. e e 17
CHAPTER 5: THE ROBOT LANGUAGEo e e e e e e e e 18
INtrodUCTioN oo e 18
COMMANAS . . .ottt e e e e e e e 18
Establishing Communication i e e 18
Timer Mechanism e 18
TS AMIPS .« & . ot ittt e e e e e e 19
The N_RobotState Structure. o e e e e 19
Base MotioN. e 20
Holonomic Versus Nonholonomic e e 20
Global and Joint Modest e e e e 20

AXIS MOdES . ..o e e 21
Velocity Mode 21

Position Modes e 21

The N_Axis and N_AxisSet Structurest e 21
The Integrated Configuration i i ettt e e e e e 23
Tactile SENSING e e 24
Infrared Proximity Sensing i e 25
Sonar ProxXimity SeNnsSiNg. e e e e e 27
Laser (SensuUS B50) . ..ottt e e e 29
POWer SYSteM e e 30
COMIPASS ittt e e e e e e e 30
Voice SYNthesizer i e e e 31

Lift MeChaniSmt e e 31

CHAPTER 6: NOMAD XR4000 LIFT MECHANISM REFERENCE 32

INtrodUCTION e e 32
740~ 1 o T o Ve 33
Deploying and Retractingo e 33
The LiftController Structure i e e e e e e e 33

CHAPTER 7: VISION REFERENCE. e et e 36

OV IV B L ottt et e 36

Sensus 450 Monochrome Vision i e 36
RUNNING @ dEMO . ..o et e e 36

Sensus 460 Color VisSioNot i i e 36
Running a simple demo e e e e e 36

Sensus 700 High Speed Color Vision System ittt i e e 37
Demonstration Program e e e e 37
Using the RPC Library with the Sensus 700. i e e e i e e 37

INtrodUCHiONo e 37
EXamMDIES . o oo e e e e 37
Theintrinsicrpc_table. 39
Intrinsic procedures called from the visionsystem........... i i, 39
Intrinsic procedures called fromthehost. 40
Compiling Sensus 700 COAEeo ittt et e e s 40
SensUS 700 VIdEO .. v vttt 41
MiscellaneouUs NOTES v vttt e e e 42
The TMS320C44 e e e e e e e e e 42

CHAPTER 8 - PROGRAMMING REFERENCE e et e e 43

QuUick ReferencCe. . . oot e e e e e 43
Communication Commands.ottt e e e e 43
Base Motion Setting Commands e e 43
Base Motion Parameters Retrieving Commands.ottt e 43
Lift Mechanism Motion Setting Commands. i i e e e 43
Lift Mechanism Retrieving commands. i e e 43
Sensing Parameters Setting Commands i e e 43
Sensing Parameters Retrieving Commandst e 43

N _ConnectRoObOto e 44

N _DisconnectRobOt. o e 46

N DeployLift. . . oot e 48

NGB AXES . o ottt et e e 50

N o GetBattery e 54

N GetBUMPEr .. e 56

N =] (Y o o =T 59

N Getlnfrared.o e 61

N_GetintegratedConfiguration i e 64

N Getlift. . .ot e e e 66

N GO0 . . .ttt e e 70

N GElSONar . . .o 73

N_GetSonarConfiguration e 76

N GO ateot e e 79

N GEtTiMEr . .o e e e e 81

N _InitializeClient. e 83

N RetractLift.o e 85

N S B AXES .« o ottt e e e 87

N_SetintegratedConfiguration. e 91

N S OyStiCK . . . ot e 94

N S etLift. . .ot e e e 95

N_SetSonarConfiguration i e 99

N S TIMEr . .ot e e e e 102

N S PEaK . . .ottt e e e 104

N ZeroLift. . o ot e e 105

CHAPTER 1: GETTING STARTED

OVERVIEW

Nomadic has developed a new robot software architec-
ture known as the Xtreme Raobotics Development Envi-

ronment or XRDev.
Ngui Ngui
Network

Network

Nsimulator Nsimulator

Nscheduler

Nsimulator

NHost_Client.a

Link

Figure 1. Software Architecture

The new software consists of the following libraries and
executables:

RELEASE 1.0 Contents

This release contains:

m A README file with release notes, and an
INSTALL file with installation instructions, both
located in the top level directory.

m The graphical user interface progralgui ,
located in thebi n/ directory.

m One library file, Nnost _cl i ent. a, located in
thel i b/ directory.

m One header file)\cl i ent . h, located in the
i ncl ude/ directory.

m Several example programs located indik@m
pl es/ directory.

m This documentation file located in tdec/ direc-

tory.

In addition, the robot distributiorxf dev- xr 4000-
1. 0. 0-i 386-unknown- | i nux) contains addi-

1 Nrobot - Thisisthe robot program that runs on tional files required for the robot server functionality:
the robot itself and listens to commands. Upon s Th bot _ located in th
receiving these commands, it directs the robot hard- ? serv'er progranir obot , located in the

) . . . sbi n/ directory.
ware accordingly. This program is also extensible,
so that the user may add new behaviors to the robot m Several utility programs, located in then/ direc-
without requiring the source code. tory.

2 Nhost_client.a-Thisisthelibrary of func- ®m The motor driver modulesr m o, located in the
tions used by aclient to direct the robot from any modul es/ directory.
machi neon th? netwprk. 'I.'he. user merely compiles g Enedded code for the various distributed nodes on
hlsprogrgm, links with this library, and_then runs the robot, located in thenbedded/ directory.
the resulting executable program. The library itself - _ .
deals with all of the underlying network communi- [] Addltlonal documentation and notes in thec/
cation occurring while the user’s program is talking ~ directory.
to one or moré\r obot processes. This library is This release requires:
smart enough tg use opumlzed commumcatpn A Nomad XR4000 robot running under Linux
when the client is running on the same machine as .

release 2.0.0 or higher.
Nrobot.
3 Ngui - This is the graphical user interface, which '

provides a graphical representation of robot activ-
ity/sensor-readings while allowing users to direct
robots manually.

m A UNIX workstation running under Linux release

2.0.0 or higher.
A Simple Example

Here is how to compile and run teeer ve. ¢ exam-
ple provided with this release. You can also start the
robot and control it from the Graphic User Interface

(GUI) without any user program. Please refer to “Chap-
ter 4: The Graphic User Interfacefor information on
the GUI.

In this scenario, the program swer ve. ¢ iscompiled
and linked toNhost _cl i ent. a andrunsonawork-
station while the robot is running Nr obot .

1

Verify that Nr obot isrunning. If not running, see
the | NSTALL in this distribution.

Choose a machine to run your client program on.
This can be any machine connected to the network,
including the robot itself.

Login to the machine and change to the proper
examples directory, such as/ xr dev- 1. 0. 0-
i 386- unknown- | i nux/ exanpl es/

Compile swer ve on the client machine:
make swerve

Run swer ve, giving it the hostname of your robot
with the - - host command-line option. For exam-
ple, to control arobot with hostname "fatboy", you
would type

swerve --host fatboy

Also, if you started Nr obot with arobot ID other
than 1, you will need to give therobot ID with the -
-robot i d command-line option:

swerve --host fatboy --robot_id 2

CHAPTER 2: THE XRDEV ARCHITECTURE

DESIGN FEATURES

XRDev is amulti-process architecture. An XRDev appli-
cation is made of several processes: robot processes, user
processes, interface processes, etc., communicating
through the network. Thereisno limit (but efficiency and
network load) to the number of robots that can be con-
trolled under XRDev and no limit to the number of user
programsthat control them. Thereisaso norestriction on
the number of robots that can be controlled by one user
program and no restriction on the shared control of one
robot by several user programs. Finally, user programs
can be executed anywhere on the network.

Processes and Configurations

There are three types of processes:

1 AnNrobot processdrivesareal robot. There can
be any number of Nr obot processesin the appli-
cation, but only one Nr obot process running on
each real robot.

2 AnNgui process sets agraphic interface. From
thisinterface, a user can send commandsto and
retrieve datafrom any Robot Process. There can be
any number of Ngui processes, connected to any
number of Robot Processes.

3 A user process embeds the user program that
directs robot processes.

There are a number of possible configurations using
various combinations of these processes.

The simplest configurationis Nr obot running on the
robot and Ngui running on ancther machine, communi-
cating over the radio Ethernet. The user manually con-
trols the robot from Ngui

Ngui

Network

Nrobot

I
Robot |
Hardware |

Figure 2. Simple Configuration - One GUI, one robot

A more elaborate configuration involves an Nr obot
process and a user client program linked with the Host
Client Library:

User Program

T
' Link

NHost_Client.a

Network

Nrobot

Robot

Figure 3. Simple Network Configuration
One robot, One User Program, running across a network.

In this configuration, the User Program linked to the
Host Client Library can be compiled and executed on
any machine with a (wired or radio) connection to the
robot. The Nr obot process runs on the robot.

CHAPTER 3: NROBOT

INTRODUCTION

Nrobot is the server that communicates with the robot
hardware by sending commands and receiving sensor
data. All user programsinteract with the robot through
this process.

Nrobot is usually run from the system startup scripts.
Theinstallation processinstalls afilein /etc/rc. d/
init.d cadled robot. Thisisashell script which
handles initialization and shutdown of robot hardware
devices, and starting and stopping of the Nrobot pro-
Cess.

The default setup for Nrobot should be fine for most
installations, and you will be able to use the program-
ming APl simply by specifying the hostname of your
robot. However, if any of the following are true for you,
you may need to change your Nrobot configuration:

® You have additional hardware devices, such as a
SICK laser or aNomad X RLift mechanism.

® You have more than one XR4000 at your site, in
which case one of your robots will need to have a
robot ID number other than the default of 1.

m You wish to change the default state to which Nro-
bot initializes your sensors (currently, Nrobot only
initializes sonars).

This chapter will describe how to change the configura-
tion of Nrobot via setup file (for permanent configura-
tion), and viathe command line (for one-time only
testing). It also presents a few troubleshooting tips,
should you run into problems.

XRDEV CONFIGURATION OPTIONS

Asyou will learn in Chapter 5: The Robot Language,
clients must go through a two-step process in order to
establish a data connection to a given robot. The first
step establishes a TCP/IP connection to a scheduler,
which is a process on the network that keeps atable
mapping robot 1D numbers to socket connection infor-
mation. The client then requests the socket connection
information for the ID number of the robot it wishes to
connect to, and the scheduler providesit.

When Nrobot is started, it establishes a TCP/IP listener
socket for clients to connect to. It also connectsto a

scheduler and informs it of it's robot ID, as well as its

host name and the port number of its listener socket.
From this point on, any clients connecting to the sched-
uler are informed of this robot.

In the default configuratiorirobot acts as its own
scheduler. That is, clients connect directly to Nrobot and
are informed of one robot entry, which resides on the
connection already established.

However, if you have more than one robot, you may
wish for one of them to act as a scheduler for both
robots. In this case, robot number 1 must be configured
to connect to robot number 2 (which is acting as sched-
uler) and register its robot ID (1). Then, a client wishing
to connect to robot number 1 would ask the scheduler
(robot number 2) where on the network robot number 1
resides. Once it had this information, it then establishes
a second connection to robot number 1. If desired, this
client could also establish a connection to robot number
2, since robot number two is scheduling itself as well as
robot number 1. This allows a single client program to
control two robots simultaneously.

Nrobot accepts the following configuration options:

Robot I1D: the number by which client programs refer to
this robot. This can be any integer number greater than
zero. The default is 1.

Listener port: the TCP port number on which Nrobot
listens for data connections (as well as scheduler con-
nections, if it is scheduling itself). The default is 7073.
Any port number between 1024 and 65535 may be used.

Scheduler location: a hosthame and TCP/IP port num-
ber which describe the location on the network where
Nrobot should register its robot ID. By default Nrobot
schedules itself.

Command line options

To configure these parameters for one-time testing, Nro-
bot provides the following command-line options:.

10

Option Description
-hel p Prints out a usage message
-robotid n The ID number to register as.
-port n The TCP port on which Nrobot will listen for connections
- schedul er host nane The hostname of the scheduler
-schedul erport n The TCP port on which the scheduler is listening
-f fil ename The name of an alternative setup file
-d Do not fork to run in the background
Setup file options li stener_port = 7073

The above parameters can al'so be specified on a perma- Keep in mind that command-line options always over-
nent basis by adding them to Nrobot's configuration file. fide setup file parameters.
By default, this file ig usr/ | ocal / xr dev/ et c/ DEFAULT SENSOR STATES

nrobot . cf g; this can be overridden using the
command-line option. When Nrobot initializes, it looks in its setup file for

] o)) default sonar firing orders; if it finds these, it will send a
The configuration file consists of sections and key/value .) . .
corresponding configuration command to the appropri-

pairs. Sections are denoted by surrounding braces. Key-

d d their val | ted b ate door. Each sonar set has its own section of the form
wores an) eirvalues are always separated by an [sonsetN] where N is replaced by the sonar set number
equals (=) sign. In the following example, fheaz]

i) (0-5; seeChapter 5: The Robot Language for a descrip-
section has one entry which sets the keyward equal . - .
tion of these indices). For example, the section

to "bar ™ [sonset 1] configures the bottom sonar set on the
[baz] front door. To configure the firing orders, add a line to
foo = bar the desired section of the form:

Nrobot’s robot ID and data port may be specified in thefiring_order = fo0 fol fo2 ... foN

[robot] section of its configuration file. To specify

])) Eachf ONvalue is a sonar index from O to 7. The special
the robot ID, edit the value associated with the keyword I S .
)]) value 255 indicates termination of the firing order. For
r obot _i d. To specify the port, the keyword is

))) example, to configure the bottom sonar set on the left

| i stener port . For example, the following section , . .

- ’ door to alternately fire the first and eight sonar, use the
specifies a robot ID of 2 and a listener port of 1001: .

following:

[robot]
robot id =2
listener _port = 1001

[sonset 4]
firing_order = 0 7 255

To configure the top sonar set on the front door to be

Similarly, the scheduler that Nrobot registers with can
completely off, use

be specified in thgschedul er] section, via the
host name andl i st ener _port keywords. The [sonset 0]
following example configures Nrobot to register with a firing_order = 255

scheduler located at robot2.my_lab.edu on port 7073: gy default, each door initializes its sonar firing order to

[schedul er] all on.
host name = robot 2. ny_I ab. edu

ADDING NEW HARDWARE

If you have purchased a Nomad X RIift mechanism or
one or more SICK lasers with your robot, Nrobot must
be told that they are present so that they will be initial-
ized upon startup. Thesetup file[| i ft] sectionis
used to configure your lift mechanism, and the [s550]
section is used to configure SICK lasers.

There aretwo keywordsinthe[| i ft] section. The
firstist ype, and thisshould alwaysbesettoxr i ft.
The second, conf i g_pat h, should be set to the path-
name of the configuration file generated by the utility
programxr | conf i g. Thisprogram and the calibration
process are described in Chapter 6: XR4000 Lift Mecha-
nism. The following is atypical XRIift description:

[1ift]

type = xrlift

config_path = /usr/local/xrdev/etc/
xrlift.cfg

SICK lasers are described inthe [s550] section. The
first keyword, s550s, givesalist of al connected Sen-
sus 550s. The entriesin thislist will be taken as key-
words for following lines which each describe an
individual sensor. A SICK description line takes the
form

keyword = Cr eat eS550 nane poi nt count X
y cosine sine reference port

Cr eat eS550 Keyword, do not changg

1%

An arbitrary name

name . i
assigned to this sensor

The maximum number
of points supported by
this sensor; usually 361

poi nt count

The X, Y location of the
centerof the scan
relative to the base
object

The sine and cosine of
the sensors heading
relative to the base
object

cosi ne, sine

11

The name of the object
this sensor is positioned
relative to; usdase

ref erence_obj ect

The serial port to which

port this sensor is attached.

For example, the following section describes two SICK
lasers attached to the robot. The first SICK is mounted
in the standard position, facing out the provided ot in
the front door, and is connected to the first serial port.
The second SICK is mounted on top of the robot, and
the center of its scanning is coincident with the center of
the XR4000. It is facing backwards and is connected to
the second seria port:

[s550]

s550s = s550a s550b

s550a = Creat eS550 s550a 361 0 150 0 1
base /dev/ttyS0

s550b = CreateS550 s550b 361 0 0 0 -1
base /dev/ttySl

The positions described by these configurations are
relayed to the GUI so that it can display the laser data

appropriately.
TROUBLESHOOTING

Only one process may be accessing the robot's Arcnet
system at a given time. This means that there may be
only one instance of the Nrobot process running in the
system. To prevent multiple instances, Nrobot uses a
lockfile mechanismin the directofy np/ . nr obot / .
Nrobot creates a lockfile in this directory when it initial-
izes. This file is deleted when Nrobot is killed. If, upon
initialization, Nrobot gives an error message claiming
that the lockfile already exists, this probably means that
the system was not shut down cleanly. To remedy the
situation, first verify that there is indeed no other Nrobot
process currently running (you can useghecommand

to check this); if Nrobot is not running, you may safely
delete the lockfile:

rm/tnp/.nrobot/*. | ock
Then, you can restart Nrobot manually:
[usr/ | ocal / xrdev/ sbhi n/ Nrobot

It may be wise at this point to investigate why the sys-
tem was not shut down cleanly!

12

CHAPTER 4: THE GRAPHIC USER INTERFACE

INTRODUCTION

Ngui isthe primary graphical interface for the control and monitoring of the Nomad X R4000.
Ngui allows the user to:

m Control arobot using the software joystick

m Monitor the sensor readings of a robot instantaneously and accumulated over time

Ngui consists of the two main windows:

m TheWorld Window on which all sensor data and robots are displayed

m The Robot Window that corresponds to each robot that Ngui is connected to.

In addition, there are several panels used to control both interface and control settings.
Getting Started
Run Ngui by name:

Ngui
Upon invocation, you will see an empty World Window as shown in Figure 4. There is only one World Window per
Ngui process, but there are as many Robot Windows as there are connected robots

Command Line Options

The behavior of Ngui can be modified by command line options listed bel ow.

Key Purpose Value Default
-h Scheduler Host | Machine name localhost
-S Scheduler Port Integer > 1024 65000

For example, to run Ngui and tell it to automatically connect to the robot "fatboy", invoke:
Ngui -h fatboy -s 7073

where 7073 is the default Nrobot socket number.
World Window

The World Window is the primary window of Ngui and is always present, even in the absence of connectionsto
either robots or simulators.

The World Window contains three areas;

m World Drawing Area: within this area are the time-accumul ated sensor readings and aicon representation of the
robot and its orientation.

m World Window Status Area: located at the bottom of the world window, this area consists of two lines of text:
the window bounds description and the information line. The window bounds description always contains a copy
of the current window bounds (in world coordinates). The information line is used by Ngui to display various
messages about ongoing operation

m World Window menu bar: located at the top of the window, thisis where the pulldown menus are located. The

13

functionality of the menu itemsis described in the next section.

ligii =G
[Ele Vim Fanals
E!ll' A ll..--""
'.:‘:..'ﬁi_ H \'
+
F] f
A
I L
I L g
IN R
|
T
= . -

Wi vl fcair LLG—0PETY | —00ETTED, LR AERORSES | HOEL N
Uite! coorginates & willisfbern! arades = redtmm!

Figure 4. The World Window
World Menu Bar
File Menu
m Exit: Exit Ngui application. All windows will be closed.

? A i S g WAL 0O ET

| =

Figure 5. The Exit Panel
View Menu
m Zoom: Allowsthe user to zoom in by pressing the left button and zoom out by pressing the right button.
m Unzoom: Same as zoom, with buttons reversed
m Clip: Allowsthe user to resize the viewing area by dragging with the | eft button to delimit new bounds.
m Center: Allowsthe user to center the screen on aleft-clicked point
m Slide: Allowsthe user to pan the view by left dragging in the drawing area
Panel Menu

m Display: The display panel allows control over what is displayed in the world window’s drawing area. For each
robot or simulator, the display panel provides a button for each type of data that may be shown. Click in the

14

boxes you wish to display, and click OK to apply the changes.

Figure 6. The Display Panel

m Refresh: The refresh panel allows the user to “refresh” (i.e. erase old content to make room for new content) vat
ious types of data. For each robot or simulator, the display panel provides a button for each type of data that m:
be refreshed. Click in the boxes you wish to refresh, and click OK to apply the changes.

Figure 7. The Refresh Panel

m Connect: If Ngui is not connected to a scheduler, then the connect panel will allow the user to specify the host-
name and port number of a scheduler to connect with. Type in the name of the host and port number, then clicl
OK to continue.

Figure 8. The Connect Panel

If Ngui is currently connected to a scheduler, then the connect panel will present the user with a list of the currently
registered processes, which the user may then connect to. Click on the box next to the status “Connected” box anc

click OK to connect as shown in Figure 9.

Fobat Hesk Fari et

1 Fabeg ok TR ¥ Coneesbed

[o] tamt | by |

Figure 9. The Connect Panel

m Units: The units panel allows the user to change the units used by Ngui .

Amleal F reches A degrw

Elilll-l-i:rulll'H.l!

Figure 10. The Units Panel

Robot Window

Thiswindow givesthe user full accessto the entire state of the robot, and provides an interface for control. The Robot
window is separated into the following subwindows:

m Short Range Sensor: contains instantaneous readings of the tactile and infrared sensors.
m L ong Range Sensor: contains instantaneous readings of the laser and sonars sensors.
m Joystick: contains a software joystick that allows the robot to be moved by using a mouse.

m Robot Information: contains instantaneous information about the Integrated Configurations (axis positions),
axis speeds, axis accel erations, compass and battery values.

RAedaat | HEE
ALY
'\-:_‘:\-1-'5- 5 '-r'::.{"' iy " S —
= »ia %{, |
- e
NS J
I.'"II iy
= Pl TaForpal lan
Pt Bl P =L iy Cimmpird Balisy (W)
L] -4 00 | A m,m |) | rgla pom | Beb 1 TIEHE
T Him | Y Him | Y HidE Eat 2 +13.85
T wlid | R wiom | R i, Pat § a1EM
Bal 4 +1353

Figure 11. The Robot Window

16

Short Range Sensor

The Short Range Senor display islocated in the top left-hand corner of the Robot Window. It shows a graphical

depiction of the robot’s short-range sensors. These sensors currently include the robot’s infrared and tactile sensor
Infrared sensors are displayed by a series of cones and/or rays, while tactile sensors appear as small colored squs
Green squares represent soft bumper hits and red squares represent hard bumper hits. Also displayed is an orient
circle representing the robot’s base.

The Short Sensor Options menu is used to control the sensor display in the Short Sensor display window. It offers t
following options:

Show Infrared Rays: toggles whether or not the infrared sensors will be depicted as central rays.
Show Infrared Cones: toggles whether or not the infrared sensors will be depicted as oriented cones.

Global/Local View: in global mode, the robot’s orientation will reflect its orientation in global world coordi-
nates, and all sensor data will also be shown globally. In local mode, the robot’s orientation will remain fixed,
and sensor data will be displayed in robot-relative coordinates.

IR Set Display: a series of toggle buttons to control the display of the robot’s different sets of infrared sensors.

Bumper Set Display: a series of toggle buttons to control the display of the robot’s different sets of bumpers.

Long Range Sensor

The Long Range Sensor display is located in the top middle of the Robot Window. It shows a graphical depiction of
the robot’s long-range sensors. These sensors currently include the robot’s sonar and lasers. Sonar sensors are di
played by a series of cones and/or rays, while lasers appear as a set of connected red lines. Also displayed is an ¢
ented circle representing the robot’s base.

The Long Sensor Options menu is used to control the sensor display in the Long Sensor display window. It offers tf
following options:

m Show Sonar Rays: toggles whether or not the sonar sensors will be depicted as central rays.

m Show Sonar Cones: toggles whether or not the sonar sensors will be depicted as oriented cones.

m Global/Local View: in global mode, the robot's orientation will reflect its orientation in global world coordi-
nates, and all sensor data will also be shown globally. In local mode, the robot’s orientation will remain fixed,
and sensor data will be displayed in robot-relative coordinates.

m Sonar Set Display: a series of toggle buttons to control the display of the robot’s different sets of sonar sensors.

m Laser Display: a toggle button to display of the robot’s laser sensor data.

Joystick

The Software Joystick, located in the upper-right corner of the Robot window, can be used to control the robot
remotely from Ngui. The black dot in the window represents the current position of the joystick. By clicking on the
black dot with certain combinations of mouse buttons, motion similar to the real joystick is realized:

Left Mouse Button, X -Y mode: dragging the mouse while holding this button will move the robot’s X and Y
position and will not change the orientation.

Right Mouse Button, Frisbee mode: dragging the mouse while holding this button will cause the robot to lock
onto afixed direction in world coordinates and move along that direction as commanded by the y-axis of the joy-
stick and rotates as commanded by the x-axis.

Both M ouse Buttons, Differential mode: Dragging the mouse while holding both buttons will move the robot
forward as commanded by the y-axis of the joystick and turn as commanded by the x-axis. Thisis the most intu-
itive mode.

17

For all modes, the speed depends on how far from the center you move the joystick dot (the farther, the faster).
Rel ease the button to stop the motion.

M A common mistake is to give an absolute meaning to the soft joystick directions, like N, S, E, W. The motions are
always relative to the current orientation of the wheels. Moving the dot to the top will move forward, which may
be South if the robot is so oriented.

M 1If your mouse has three buttons, the middle button is equivalent to pushing both the left and right buttons
together.

Info Window

The Info window is at the bottom of the robot window. I nside the Info window are displayed the current valuesfor the
following:

Pose: this is a display of the robot’s instantaneous integrated configuration (i.e. its position in world coordinates).
m Speed: this is a display of the robot’s instantaneous speed.

m Acceeration: this is a display of the robot’s current acceleration values.

m Compass: this is a display of the robot’s compass value. This is not functional for release 1.0.

m Batteries: this is an instantaneous display of all four of the robot’s battery voltages.

18

CHAPTER 5: THE ROBOT LANGUAGE

INTRODUCTION

The programming paradigm of XRDevV is very simple: A single data structure, the N_Robot St at e struc-
ture, holds all the configuration and sensor data. A pointer to this structure is given by the function
N_CGet Robot St at e. The user then sets the desired parameters by modifying the contents of this struc-
ture. For example, to move the robot, the contents of the AxisSet field within N_Robot St at e are modified
to reflect the desired motion, followed by a call to N_Set Axes() . Similarly, to retrieve information about
the robot’s axes, a call to N_Get Axes() is followed by reading the appropriate fields in N_Robot St at e.
This example can be easily generalized to each subsystem on the robot, which has an appropriate “get”
and often a corresponding “set” command.

COMMANDS

This section describes the various sensing and motion facilities on a typical Nomad robot and how they
can be used. Please bear in mind that not all facilities are installed on every Nomad robot. For a list of
accessories that have been installed on your robot, please consult the purchasing and/or factory paper-
work.

Establishing Communication

The client program must first connect to a scheduler. The scheduler acts as a global timer (among other
things) for the simulation when using a simulated robot and is required whenever there are more than two
(real or simulated) robots in the client program. When connecting to a single real robot, however, the
scheduler is not necessary because the real robot can act as its own scheduler. Connecting to the scheduler
isdone by callingN I nitializeCient(),whichisdeclared as:

int NlnitializeCient (const char *schedul er _hostname, unsigned short
schedul er _socket);

Here, schedul er _host nane is the network hostname of the machine that is running Nscheduler and
socket is the TCP/IP socket number that the scheduling process is listening on. As a special case, when
there is only one robot (real or simulated), N InitializeC ient() should be called with the robot's
hostname and listener socket. Socket numbers can be given to Nschedul er and Nr obot as command-line
arguments or configuration file entries, and are displayed when these programs start running.

After establishing communication with the scheduler, communication to the robot must be established.
This is accomplished with N_Connect Robot , which is declared as:

i nt N_Connect Robot (1ong Robotl|D);

where Robot | Dis the identification number of the robot.

Similarly, when the user wishes to discontinue communication with a robot, a call to
N_Di sconnect Robot should be made.

N_Di sconnect Robot is declared as:
N _Di sconnect Robot (| ong RobotID);
Timer Mechanism

The Timer Mechanism is a built-in safefy feature the prevents the robot from continuing to move when a
client program is no longer functioning. It accomplishes this by keeping an internal timer that is reset each
time a client program makes a call to the client library with a “set” or “get” command.

When the timer exceeds a user specified threshold, the motors in the base are turned off, as if the emer-

gency stop button was pressed. The timer threshold is stored in the N_Robot St at e structure in the
Ti mer field, which is defined as:

struct N_Tiner

{

| ong Ti neout;
unsi gned | ong Ti ne;

s

Here, Ti meout is the timer threshold, after which the base motors will be turned off. Ti e is the robot’s
master reference clock and represents the amount of time the robot has been powered up. Both parameters
are in units of milliseconds. For safety reasons, the user cannot set the Ti neout parameter to exceed 1500
milliseconds.

To set and retrieve the Ti neout parameter, the client program can make calls to N_Set Ti mer and
N_GCet Ti mer , respectively. These functions are declared as:

int N CGetTimer (long RobotlD);
int N SetTimer (long RobotlD);

Timestamps

Since there is often latency associated with obtaining sensor information, each sensor reading has a times-
tamp associated with it that provides the time at which the measurement was taken. The timestamp is found
in the TimeStamp field of the associated part of the N_Robot St at e structure. The sensor latency is gov-
erned by the update rate of the sensor and the amount of time it takes to send the sensor information from
the robot to the user.

For example, when the robot is moving rapidly and obtaining information both from low update-rate sen-
sors (such as sonar) and high update-rate sensors (such as Integrated Configuration), it is very likely that the
information from the two sensors is obtained at inconsistent times. This can cause large errors if the informa-
tion from these sensors is being fused somehow (such as in a map.) The timestamps from the two sensors tell
the user when the measurements were made with respect to a master reference clock (the Ti ne field in

N_Ti ner) and allows the information from the two sensors to be reconciled.

Extending the example further, a reasonable method to fuse sonar and Integrated Configuration informa-
tion is to determine the Integrated Configuration values at the time the sonar measurements were taken
(at the sonar’s timestamp). This can be done easily by linearly interpolating between two appropriate Inte-
grated Configuration values -- most likely an Integrated Configuration value that was taken before the
sonar’s timestamp and one that was taken after.

The N_RobotState Structure

The N_Robot St at e structure is the repository used in all data exchanges between a client program and a
robot (real or simulated). It contains fields for all facilities available on the robot. It is defined as follows:

struct N_Robot State

{
N_CONST | ong Robot | D;
N_CONST char Robot Type;
struct N_Integrator |ntegrator;
struct N _Axi sSet AxisSet;
struct N LiftController LiftController;
struct N Joystick Joysti ck;
struct N _Sonar Controller SonarController;
struct N InfraredController InfraredController;
struct N _BunperController BunperController;

19

20

struct N _Conpass Conpass;
struct N _Laser Set Laser Set;
struct N _S550Set S550Set;
struct N BatterySet BatterySet;
struct N Tiner Tinmer;

h
A client program gains access to the N_Robot St at e structure with a call to N_Get Robot St at e() com-
mand, which is declared as:

struct N_RobotState *N _Get Robot State (| ong Robotl| D);

It returns a pointer to the active N_Robot St at e for the robot specified by Robot | D. In general,

N_CGet Robot St at e is called only once at the beginning of the program for each robot that the client
wishes to connect to. The pointer it returns is then referred to throughout the program when exchanging
information with the robot.

When the client program wishes to retrieve all information from all facilities on the robot, a call to
N _Cet St at e() can be made. It is declared as:

int NGetState (I ong RobotlD);

A call to N_Get St at e is equivalent to executing all “get” commands except N_Get Ti rmer () which must
be called explicitly for an update.

Base Motion
Holonomic Versus Nonholonomic

A rigid body constrained to a plane has up to three degrees of freedom. In Cartesian space, these are often
thought of as X, Y and rotation. The same rule applies to a mobile robot base moving on the floor. In the
case of the Nomad 200, which uses a synchro-drive base, there are two axes of motion (not including tur-
ret): steering and translation. When the user wants to accelerate in a given direction, the wheels must first
be oriented along that direction using the steering axis. This limits maneuverability and adds complexity
to the control algorithm, which must explicitly take steering into account when the acceleration direction
changes. The XR4000, on the other hand, can accelerate in any direction at any time, making it holonomic.

Global and Joint modes

The XR4000 has three convenient and intuitive axes of motion: X, Y and Rotation. We have defined two
possible ways to control the XR4000 base:

Joint mode: this mode treats the XR4000 axes as joints. That is, a joint has a position, a positive direction
and a negative direction that is defined with respect to the body to which it is attached. In joint mode, the
XR4000 has three joints attached to the center of the robot. The Y joint (axis) creates linear movement along
the forward/backward direction with respect to the robot. The X joint (axis) creates linear movement
along the left/right direction with respect to the robot. The Rotation joint (axis) creates rotational move-
ment with respect to the center of the robot.

For example, if we want the robot to move forward (by forward, we mean with respect to the robot’s
front), we instruct the Y axis to move in the positive direction. If we want, we can instruct the X and Y axes
to move simultaneously to create diagonal motion. If we instruct the Rotation axis to move in the positive
direction, the robot spins counter clockwise about its center. Simultaneous Rotation and Y axis movement
in the positive direction will cause the robot to move in a circle. This is because the direction of the Y axis is
defined with respect to the robot, which is rotating.

Global mode: this mode controls the XR4000 axes with respect to a fixed global reference frame. This glo-
bal reference frame can be thought of as “drawn on the floor” and is defined when the robot is first turned

21

on or when calls to N_Set | nt egr at edConf i gur at i on are made. In global mode, motion with the Y
axis always causes movement along the Y direction in the reference frame regardless of the robot’s rota-
tional orientation. Thus, simultaneous rotation with the Rotation axis and Y axis motion will cause
straight-line movement along the Y direction in the reference frame (as opposed to circular motion in Joint
mode).

These modes specified in the N_Axi sSet structure of N_Robot St at e. If the A obal field in the

N_Axi sSet structure is set to TRUE, the axes are put in Global mode. If the Global field is set to FALSE,
the axes are put in Joint mode. Note that this affects all axes, and Global/Joint modes cannot mixed among
the axes. Mixing the Global/Joint modes could create ambiguous motion commands.

Axis Modes

Each of the robot’s axes can be controlled in a separate axis mode (not to be confused with Global/Joint
modes which apply to all axes: X, Y and Rotation). This mode is specified in the Mode field of the N_Axi s
structure, of which there is one per axis. The N_Axi s structure is part of the N_Axi sSet structure of
N_Robot St at e.

Velocity Mode

In velocity mode, a user-specified velocity is set for the axis, and the axis maintains that velocity until the
velocity or the mode is changed for that axis. The user also specifies an acceleration parameter that con-
strains how fast the velocity can change if the velocity needs to increase or decrease. This mode is specified
by setting the Mode fieldto N_AXI S VELOCI TY.

Position Modes

In position mode, a user-specified destination position is set for the axis, and the axis moves to that posi-
tion and stops. The user also specifies a desired speed and acceleration parameter. The desired speed spec-
ifies the magnitude of the velocity while the axis is moving to the destination position. The acceleration
constrains how fast the velocity can change if the velocity needs to increase or decrease. The two possible
position modes are absolute and relative, which are specified by setting the Mbde field to

N_AXI S _PCSI TI ON_ABSOLUTE or N_AXI S _PCSI TI ON_RELATI VE, respectively. Absolute position
mode moves the axis to the absolute position with respect to the zero position of the axis. Relative position
mode moves the axis to the position relative to the current position.

The N_Axis and N_AxisSet Structures

Inside the N_Robot St at e structure is the N_Axi sSet structure which contains all the information con-
cerning the base motion axes:

struct N_Axi sSet

{
BOOL d obal ;
unsi gned char St at us;
N_CONST unsi gned int Axi sCount;
struct N Axis Axi s[N MAX AXI S COUNT] ;
s
<toc 2>

m d obal : when set to TRUE puts the base in Global mode and when set to FALSE puts the base in Joint
mode.

m St at us: can be one of the following values:
N_AXES_READY: This indicates that the axes are available for movement.
N_JOYSTI CK | N_USE: This status indicates that the base is being controlled via joystick.
N_ESTOP_DOWN: This status indicates that one or more of the emergency stop buttons is

22

depressed, preventing the robot from moving.
N_MOTION_ERROR: The base was unable to execute the command motion.

The N_Axi s structure contains information for each individual axis:

struct N _AXis

{

BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
BOOL Updat e;

unsi gned | ong Ti meSt anp;
char Mode;

b

ong DesiredPosition;
ong Desi r edSpeed,;

ong Accel erati on;

ong Traj ectoryPosition;
ong TrajectoryVel ocity;
ong Act ual Posi ti on;

ong Actual Vel ocity;

BOOL | nProgress;

Dat aAct i ve: A TRUE value for this parameter causes the values in this structure to be updated --
namely Mbde, DesiredPosition, DesiredSpeed, Accel eration, Traj ectoryPosition,
Traj ectoryVel ocity, Actual Position, Actual Vel ocity, | nProgress,andTraj ect o-
ryVel ocity.

Ti meSt anpAct i ve: ATRUE value for this parameter causesthe Ti me St anp parameter to be updated.

Updat e: A TRUE value for this parameter causes the input values (Desi r edSpeed, Desi redPosi -
tion,and Accel er ati on) to be loaded into the set of working values for this axis when a call to
N_Set Axes is made. The Updat e parameter allows one or more axes to be loaded with new input
values simultaneously.

Ti meSt anp: the time value in milliseconds that the axis values were measured.
Mbde: One of the following:

N_AXI S_PGCSI Tl ON_RELATI VE: Specifies that the axis move relative to the current position.

N_AXI S_PGCsSI TI ON_ABSOLUTE: Specifies that the axis move to an absolute position with respect to
the absolute zero location of the axis.

N_AXI S_VELQC! TY: Specifies that the axis move with a constant velocity.

N_AXIS_STOP: Causes the axis to decelerate to zero velocity.

Desi r edPosi t i on: Specifies the desired endpoint position of the axis. The units are in millimeters
for translational axes and milliradians for rotational axes. When Mbde is set to

N _AXI S POSI TI ON_RELATI VEor N_AXI S _PCSI TI ON_ABSOLUTE this specifies the endpoint posi-
tion relative to the current position or the absolute position, respectively. This parameter is not used
when Mode is set to N_AXI S_VELOCI TY or N_AXIS_STOP. If in Global mode (Global=TRUE), the
Desi redPosi ti on is with respect to the global reference frame. If in Joint mode (Global=FALSE), the
Desi redPosi ti on is in joint coordinates.

Desi r edSpeed: Specifies the speed at which this move is to be executed. This parameter is not used
when Mode is set to N_AXIS_STOP.

Accel er at i on: Specifies the acceleration to the Desi r edSpeed or subsequent accelerations if
Desi r edSpeed is increased during a move. This also specifies the deceleration from the Desi r ed-
Speed when an endpoint position is reached (when Mode is either N_AXI S_PCSI TI ON_RELATI VE or

N_AXI S_PGCSI TI ON_ABSOLUTE) or when the Desi r edSpeed is decreased. The units are in millime-
ters/second for translational axes and milliradians/second for rotational axes.

m Traj ectoryPosition:Provides the current position of the trajectory generator. If in Global mode
(Global=TRUE), the Tr aj ect or yPosi ti on is with respect to the global reference frame. If in Joint
mode (Global=FALSE), the Tr aj ect or yPosi ti on is in joint coordinates.

m Traj ectoryVel oci ty: Provides the current velocity of the trajectory generator. If in Global mode
(Global=TRUE), the Tr aj ect or yVel oci t y is with respect to the global reference frame. If in Joint
mode (Global=FALSE), the Tr aj ect or yVel oci ty is in joint coordinates.

m Act ual Posi ti on: Provides the actual position of the axis. The value of this field is based on the set-
ting of the Global field. If in Global mode (Global=TRUE), this field provides the position of the axis in
the global reference frame (this same value can be found in the N_I nt egr at or structure.) If in Joint
mode (Global=FALSE) this field provides the joint position of the axis.

m Actual Vel oci ty: Provides the actual measured velocity of the axis. If in Global mode (Glo-
bal=TRUE), the Act ual Vel oci ty is with respect to the global reference frame. If in Joint mode (Glo-
bal=FALSE), the Act ual Vel oci t y is in joint coordinates.

This value, like Act ual Posi ti on is based on the setting of the Global field in N_Axi sSet . If the Global
field is set, this field provides a value that is with respect to a fixed global reference frame.

m | nProgress: Provides a boolean value that informs the user that an axis is currently moving.
Information in the N_Axi sSet structure is updated with calls to N_Get Axes, which is declared as:

int N Get Axes(l ong RobotlD);

Modified values in the N_Axi sSet are uploaded into the motion axes for movement upon calling
N_Set Axes, which is declared as:

int N_Set Axes(long RobotID);
The Integrated Configuration

Each Nomad robot is constantly estimating its Cartesian position (X, Y, Rotation) with respect to a global
coordinate frame that is “drawn on the floor”. This is often called the dead-reckoned position, and it is
useful as an “extra sensor” that indicates where the robot is located in the environment. However, this esti-
mate tends to drift over time with respect to the actual position, limiting its usefulness over long periods.

It is estimated by measuring changes in position (dX, dY, dRotation) over very small time increments (typ-
ically 5 ms) and integrating those changes over time -- hence it is called the Integrated Configuration.

Nomad 200 Nomad XR4000

The Integrated Configuration can be obtained by making callsto N_Get | nt egr at edConfi gurati on()
and retrieving the values in the N_I nt egr at or field of the N_Robot St at e. Similarly, the Integrated
Configuration can be set to any configuration by modifying the contents of the N_I nt egr at or and mak-
ingacallto N _Set | nt egrat edConfi guration().

23

24

The N_I nt egr at or structure is defined as follows:

struct N_Integrator

{
BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
| ong X;

l ong v;

| ong Steering;

| ong Rot ati on;

unsi gned | ong Ti meSt anp;

s
Tactile Sensing

Tactile sensors provide information about physical contact with objects in the environment. It is hoped
that non-contact or proximity sensing will sense all obstacles and prevent physical contact, but this is not
guaranteed. Tactile sensors are often called “collision sensors”. The Nomad XR4000 has forty-eight bi-level
tactile sensors that surround its top and bottom perimeters. Additionally, the XR4000 has four “door
bumpers” on each door that sense contact between the top and bottom perimeters. Together, these tactile
sensors provide tactile information over the entire robot.

The XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door to make six sets total.

T S -

Left Front Right

Looking at the top of the robot:

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set2,3

The tactile sensor information is contained in the N_Bunper Cont r ol | er structure of N_Robot St at e,
which is defined as:

25

struct N_BunperController

{
N_CONST unsi gned i nt Bunper Set Count ;

struct N_Bunper Set Bunper Set [N MAX_BUMPER_SET_COUNT] ;
s

m Bunper Set Count : the number of bumper sets in the controller.
The N_Bunper Set structure is defined as follows:

struct N_Bunper Set

{
BOOL Dat aActi ve;

BOOL Ti nmeSt anpActi ve;
N_CONST unsi gned i nt Bunper Count;
struct N _Bunper Bunper[N_MAX BUWMPER COUNT] ;

m Dat aActi ve: TRUE if bumper data for this set is to be updated.

m Ti neSt anpActi ve: TRUE if the time (time of acquisition of the tactile range) is to be updated for this
set.

m Bunper Count : the number of bumpers in the set.

The XR4000’s four door bumper values are stored at the end of the top set of each door (indices 8 through
11). For instance, bumper set 2 on the XR4000 is the top set of bumpers on the second door, so the readings
for the door bumpers on the second door will be stored in bumper set 2, so there are actually 12 readings
in bumper set 2. This is why N XR4000_BUMPER_CQOUNT is 12 instead of 10. Door bumper readings are
either N_BUMPER_NONE or N_BUMPER_LOW

The N_Bunper structure is defined as:

struct N_Bunper
{

char Readi ng;
unsi gned | ong Ti meSt anp;

};

The values defined for each bumper are:

m Readi ng: one per bumper and it will always be one of the three bumper value constants defined in
Ncl i ent . h. For the Nomad 200, bumpers have only the N BUMPER _NONE or N BUMPER LOWvalue.
For the XR4000, they can also be N BUMPER HI GH (for a hard hit).

m Ti neSt anp: the time of the acquisition of the reading.

Obtaining information from the tactile sensors is accomplished with calls to N_Get Bunper () , which puts
the updated bumper information into the N_Bunper Cont r ol | er structure.

Infrared Proximity Sensing

The infrared proximity sensors provide range information to nearby objects (typically less than 30 to 50
centimeters away). They determine range by emitting infrared energy using high-current LED’s and sens-
ing the amount of returned energy with infrared photodiodes. The returned energy is inversely propor-
tional to the distance to the closeby object -- thus, these sensors are used as distance or proximity sensors.

The returned energy is also a function of the object’s reflectivity. High reflectivity objects return large
amounts of IR energy and low reflectivity objects return proportionally lower amounts of IR energy. The
difference in reflectivity between objects can cause errors in range measurements if not taken into account.

26

The XR4000 has 48 infrared proximity sensors on the top and bottom perimeters of the robot arranged in
six sets of eight. That is, the XR4000 has 3 doors that go counterclockwise and there are two (sonar/infra-
red/bumper) sets per door for a total of six sets.

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set2,3

Infrared proximity sensing information is contained in the N_I nf r ar edCont r ol | er structure in the
N_Robot St at e structure. N_| nfraredCont rol | er is defined as:

struct N_InfraredController

{
BOOL | nfrar edPaused;

N_CONST unsi gned int |nfraredSet Count;
struct N_ InfraredSet |nfraredSet[N_MAX_ | NFRARED SET_COUNT] ;

b

The configuration data used globally by all the infrared sets on the robot are:

m | nfraredPaused: When set to TRUE, all the infrared sensors will be stopped.
m | nfraredSet Count: the number of infrared sets in the controller.

The N_I nfraredSet structure is defined as follows:

struct N_InfraredSet

{
BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
N_CONST unsi gned int InfraredCount;
struct N Infrared | nfrared] N MAX | NFRARED COUNT] ;

s
It contains an array of infrared structures (one per infrared transducer in the set), plus a number of config-
uration parameters. The configuration parameters are:

m Dat aActi ve: TRUE if infrared data for this set is to be updated.

m Ti neSt anpAct i ve: TRUE if the time (time of acquisition of the infrared range) is to be updated for
this set.

m | nfraredCount : the number of infrared sensors in the set.
The N_I nf r ar ed structure is defined as:

struct N Infrared

{
| ong Readi ng;

27

unsi gned | ong Ti meSt anp;
s
The values defined for each infrared are:

m Readi ng: avalue from 0 to 255 representing the amount of reflected infrared energy returned from a
closeby object. A value of 0 represents no energy reflected (far object) while a value of 255 represents
maximum energy reflected (close object). If a distance value is needed, the user should build a calibra-
tion table by measuring the energy returned by a material sample (representative of what can be
found in the environment), at various distances.

m Ti neSt anp: the time of the acquisition of the raw value.

Obtaining information from the infrared sensors is accomplished with calls to N_Cet | nf r ar ed() , which
puts the updated infrared information into the N_| nf rar edCont r ol | er structure.

Sonar Proximity Sensing

The sonar proximity sensors provide range information to objects that are relatively far away (between 15
and 700 centimeters.) Distance information is obtained by multiplying the speed of sound by the “time of
flight” of a short ultrasonic pulse travelling to and from a nearby object.

The sonar controller structure holds all the configuration data that is valid for all the sonar sets on the
robot. Sonar sets are groups of sonar that act together. For instance, a firing order can be defined among
the sonar of a given set. The sonar controller structure has an array of N_Sonar Set structures, each
describing one particular set.

The Nomad 200 has only one set of 16 sonar, going counterclockwise from 0 to 15, with 0 in front.

The XR4000 has 48 sonar proximity sensors on the top and bottom perimeters of the robot arranged in six
sets of eight. That is, the XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/
bumper) sets per door for a total of six sets.

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set2,3

28

e e

Left Front Right

The Sonar Cont r ol | er structure in N_Robot St at e is defined as:

struct N _Sonar Controll er
{
N_CONST unsi gned i nt Sonar Set Count ;
struct N _Sonar Set Sonar Set [N MAX SONAR_SET COUNT] ;
BOOL Sonar Paused;
i
The configuration data used globally by all the sonar sets on the robot are:
m Sonar Set Count : the number of sonar sets in the controller.
The N_Sonar Set structure is defined as follows:

struct N_Sonar Set
{
unsigned int FiringOder[N MAX SONAR COUNT + 1];
| ong FiringDel ay;
| ong Bl anki ngl nterval;
BOOL Dat aActi ve;
BOOL Ti neSt anpActi ve;
N_CONST unsi gned int Sonar Count;
struct N _Sonar Sonar[N MAX SONAR_COUNT] ;

s

It contains an array Sonar of sonar structures (one per sonar transducer in the set), plus a number of con-

figuration parameters. The configuration parameters are:

m FiringDel ay: delay in milliseconds between two consecutive sonar firings. Setting this parameter to

a large value can prevent echos from previous sonars from being received.

m Bl anki ngl nt er val : the time in milliseconds to wait after a sonar sensor has fired before the sensor

begins to listen. This is currently not implemented on the XR4000 Release

1.0.

m Dat aActi ve: set to a TRUE value if the sonar data is to be updated for this set.

m Ti neSt anpActi ve: set to a TRUE value if the time (time of acquisition of the sonar range) is to be

updated for this set.

m Sonar Count : number of sonars in this set.

m FiringOder:anarray of sonar indices terminated by N_ END_SONAR_FI RI NG_ORDERif the length

of the array is less than the Sonar Count .

29

The N_Sonar structure contains the sensor readings:

struct N_Sonar

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;
b

The values defined for each sonar are:

m Readi ng: the distance measurement of the sensor in millimeters. When a sensor receives no echo (e.g.
due to specularity or excessive distance), this value will be N SONAR_TI MEQOUT.

m Ti neSt anp: the time that the measurement took place.

Obtaining information from the sonar proximity sensors is accomplished with calls to N_Get Sonar (),
which puts the updated sonar information into the N_Sonar Cont r ol | er structure.

Similarly, obtaining configuration information is accomplished with calls to

N_GCet Sonar Conf i gur at i on() . Setting the sonar configuration is accomplished by modifying the con-
figuration parameters in the N_Sonar Set structure(s) (e.g. Fi ri ngOrder, FiringDel ay, Bl anki ng-
I nt erval) and calling N_Set Sonar Confi guration().

Laser (Sensus 550)

The Sensus 550 is a “time of flight” laser rangefinding system based on the Sick Electro-optic LMS sensor.
Obtaining information from the sensor is accomplished with calls to N_Get S550() after which the data
can be retrieved from the N_S550Set structure in N_Robot St at e.

The N_S550Set structure is defined as:

struct N_S550Set

{
N_CONST unsi gned i nt S550Count;

struct N_S550 S550[N_MAX_S550 COUNT] ;
b

m S550Count : the number of Sensus 550 laser devices in the set
The N_S550 structure is defined as:

struct N_S550
{
N_CONST unsi gned int Total Poi nts;
unsi gned int RequestedPoi nts;
unsi gned | ong Readi ngs[N MAX S550 PQ NTS];
unsi gned char StatusFl ags[N MAX S550 PO NTS];
unsi gned char SunmaryFl ags;
unsi gned | ong Ti meSt anp;
BOOL Dat aActi ve;
BOOL Ti meSt anmpActi ve;

m Tot al Poi nt s: The number of points in the Readings array. Tot al Poi nt s gets set upon initializa-
tion to either 180 or 361 points according to the model used and should not be modified.

m Request edPoi nt s: The number of measurements that the user desires per laser scan. This can be
one of a set of possible values (9, 10, 15, 18, 30, 45, 90, 180, 361). If a value other than these values is
requested, an N_| NVALI D_ARGUMENT result will be returned. Fewer parameters than 361 cause the

30

sensor to return the request amount of measurements distributed evenly across the 180° viewing angle
(e.g. for a Request edPoi nt s of 10, the measurements will be 18° apart.)

Readi ngs: The set of sensor readings in millimeters with the Oth element in the array being the first,
rightmost reading. That is, the sensor takes measurements in order from right to left with respect to

the sensor.

m St at usFl ags: Status states for each entry in the Readi ngs array. This will eventually be used to
indicate if a reading violated the safe or warning fields, and various other possible conditions.
Not used in 1.0.

m Sunmar yFl ags: Status flags applicable to the entire set of readings. E.g. will indicate if any of the
readings violated the safe field. Not used in 1.0.

m Ti neSt anp: The time at which the most current laser scan took place.

m Dat aActi ve: If this is set to a TRUE value, this structure will be updated when calls to the client
library are made.

m Ti nest anpActi ve: If this is set to a TRUE value, the TimeStamp field will be updated when calls to

the client library are made.
Power System

Information about the power system consists of the measured voltages of each of the batteries on the
XR4000. These can be retrieved with calls to N_CGet Bat t er y() after which the contents of the
N Batt erySet structure of the N_Robot St at e can be read. The N_Bat t er ySet is defined as:

struct N _BatterySet

{
struct N Battery Battery[N MAX BATTERY_COUNT] ;

BOOL Dat aActi ve;
s

The mapping between the Battery array position and the physical batteries on the robot is given below.
This is a view from the top of the XR4000:

Front

D
A

The N_Battery structure is defined as:

struct N Battery

{
| ong Vol t age;

s

m Vol t age: Provides the measured battery voltage in millivolts.

Compass

31

The Compass sensor provides information about the robot’s heading with respect to magnetic North.
Obtaining this information is accomplished with calls to N_Get Conpass() , after which the contents of
the N_Conpass structure in the N_Robot St at e can be read. The compass is not support in release 1.0.

The N_Conpass structure is defined as follows:

struct N_Conmpass

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;
BOOL Dat aActi ve;
BOOL Ti nmeSt anpActi ve;

H
m Readi ng: represents the heading of the turret with respect to the magnetic north in milliradians
m Ti meSt anp: the time of the acquisition of the reading

m Dat aActi ve: TRUE if compass data for this set is to be updated

m Ti neSt anpActi ve: TRUE if the time (time of acquisition of the compass data) is to be updated for
this set.

Voice Synthesizer

The voice synthesizer allows strings of ASCII text to be spoken. It uses an embedded text to speech algo-
rithm that translates plain english text into phonemes. This is accomplished by passing a null terminated
string to the N_Speak() command.

N_Speak is declared as:
N_SpeakN_Speak (unsigned long RobotID, char *Text);
Lift Mechanism

See “Chapter 6: Nomad XR4000 Lift Mechanism Reference”.

32

CHAPTER 6: NOMAD XR4000 LIFT MECHANISM
REFERENCE

INTRODUCTION

The Nomad XR4000 Lift Mechanism is a unique three stage telescoping mechanism that mounts in the
back of the XR4000 mobile robot. The Lift Mechanism has a servo-controlled deploy axis and can automat-
ically retract and be stored inside the base when not in use. With its gripper, this system can be used to
perform mobile manipulation tasks. The Lift Mechanism provides motion in the Z direction and utilizes
the drive system of the base to provide X, Y, and Rotation degrees of freedom. Although this system does
not use brakes, it will hold its position when the robot is shutdown.

The Lift mechanism consists of two controllable axes and the Deploy axis:

1 The Lift Axis, which moves the gripper up and down (normal to the floor). It can move the gripper to
within 3 cm of the floor and to a height of 940 cm above the floor.

2 The Grip axis, moves the fork-like “fingers” of the gripper to a fully closed position and to an open
position of 20 cm between fingers.

3 The Deploy axis, simply moves the entire Lift Mechanism in and out of the robot. When the Deploy
axis is in the deployed position movement of the Grip and Lift axes is permitted, however the mecha-
nism extends beyond the outside diameter of the robot. In this position, it is possible for the mecha-
nism to collide with obstacles and damage the mechanism and/or the environment. This makes path-
planning and obstacle avoidance more difficult. When the Deploy axis is in the retracted position, the
mechanism does not extend beyond the outside diameter of the robot. This protects the mechanism
from potential damage and simplifies path-planning and obstacle avoidance.

Below is a chart which specifies the sign conventions and travel limits of the axes:

Parameter Lift Axis Grip Axis Units
Positive travel toward ceiling fingers moving apart
Negative travel toward floor fingers moving closed
Zero Position center of travel fingers completely closed
Positive travel limit 4800 2000 0.1mm
Negative travel limit -4650 0 0.1 mm
Maximum velocity 800 600 0.1 mm/s
Maximum acceleration | 800 600 0.1 mm/s?

Here, the Positive travel or Negative travel convention is the direction of movement that results in the
position of the axis becoming more positive or more negative, respectively. The Zero Position is the loca-
tion of the axis where the absolute position is zero. The Positive and Negative limits are the absolute posi-
tions within which movement is allowed.

Controlling the Lift Mechanism follows the same paradigm as controlling the base of the XR4000 -- it uses

33

a data structure, N_Li ft Contr ol | er, which contains the desired control parameters as well as the con-
figuration information. For example, to move the lift mechanism, the desired control parameters are writ-
ten into the structure followed by a call to N_Set Li f t () . Similarly when information about the lift
mechanism is needed (such as position of gripper), a call to N_Get Li f t () is followed by reading the
needed information from the N_Li ft Cont r ol | er data structure.

Zeroing

When the robot is turned on, the position of the lift mechanism’s axes are not known. In order to control
the lift mechanism, the axis positions must be determined. This is done by “zeroing” the lift mechanism
with acall to N_Zer oLi ft (). Only one call the N_Zer oLi ft () isrequired for each boot cycle of the
robot (each power-on/power-off cycle.). N _Zer oLi ft () is declared as:

int N ZeroLift(long RobotlD, BOCL Force);

Where RobotlID is the identification number of the robot with the Lift Mechanism. The For ce argument
when passed as FALSE, will zero the lift mechanism if it has not been zeroed during the current boot cycle. The
zeroing motions entail the mechanism fully deploying, the grip axis closing fully and the lift axis moving
to the highest position. During the same boot cycle, subsequent calls to N_Zer oLi ft () (with the For ce
argument passed as FALSE) will not result in the mechanism performing the zeroing motions. However,
the mechanism will perform the zeroing motions each time the For ce argument is passed as TRUE.

While the Lift Mechanism is zeroing. the | nPr ogr ess field inthe N_Li ft Cont r ol | er structure (see
“The LiftController Structure”section) is set to a TRUE value and reset to FALSE upon completion. While this
field is TRUE, no other movement commands to the lift mechanism can be or should be executed.

Deploying and Retracting

In order to move the Grip or Lift axes, the Lift Mechanism must be deployed first if it has not been already.
This is accomplished with a call to N_Depl oyLi ft (), which is declared as:

i nt N_Depl oyLift(long RobotID);

where Robot | Dis the identification number of the robot with the lift mechanism. In general, before you
attempt to move either the Lift or the Grip axes a call toN_Depl oyLi f t () should be made to ensure that
the mechanism is deployed. If it is not deployed, an error will be returned when a movement is attempted,
but no movement will result.

When the user wishes to retract the arm into the body of the robot to prevent damage due to collisions or
simplify path planning,acalltoN_Ret ract Li ft () can be made. This procedure moves the Lift and Grip
axes into a “retractable” position and retracts the entire mechanism into the body of the XR4000. It is
declared as:

int N RetractLift(long RobotlID);

where Robot | Dis the identification number of the robot with the lift mechanism.

While the Lift Mechanism is deploying or retracting (or zeroing) the | nPr ogr ess field in the

N_Li ft Control | er structure (see “The LiftController Structure” below) is set to a TRUE value and reset to
FALSE upon completion. While this field is TRUE, no other movement commands to the lift mechanism
can be or should be executed.

The LiftController Structure

All control and configuration information of the Lift Mechanism is handled through the Li ft Cont r ol -
| er structure which is part of the N_Robot St at e structure. Control is accomplished by modifying the
Li ft Control I er contents (writing the desired motion parameters) and making acalltoN_Set Li ft ().

34

Similarly, configuration information can be obtained by making a call to N_Cet Li f t () and reading the
desired configuration information out of the Li ft Cont rol | er structure. The Li ft Control | er typeis
defined as follows:

struct N LiftController

{

BOOL Depl oyed;

BOOL | nProgress;

struct N Lift Axis Axis[N LI FT_AXI'S COUNT];
s

The fields are described as follows:

m Depl oyed: provides information on whether the Lift Mechanism is fully deployed or not. A TRUE
value indicates that the Lift mechanism is fully deployed.

m | nProgress:aTRUE value in this field indicates that the Lift Mechanism is currently being retracted,
deployed, or zeroed (i.e. duetoacallto N Depl oyLi ft(),N RetractLift(),orN ZeroLift()).
While this field is TRUE, no motion commands to the Lift mechanism are accepted.

m AXi s:an array that contains the motion parameters for the two controllable axes: the Lift and Grip
axes. The two possible array indices are respectively N_LI FT and N_GRI P.

The axis parameters are contained in the N_Li f t Axi s structure, which is defined as:

struct N LiftAxis

{
BOOL Dat aActi ve;

BOOL Ti neSt anpActi ve;

BOOL Updat €;

unsi gned | ong Ti meSt anp;

char Mbde;

| ong St at us;

| ong DesiredPosition;

| ong DesiredVel ocity;

| ong MaxMot or;

| ong Accel eration;

| ong Position;

| ong Vel ocity;
}
m Dat aActi ve: a TRUE value for this field causes the parameters of this structure to be updated with

each call to N_Get Axes() . These parameters are: St at us, Desi r edPosi ti on, Desi redVel ocity,

Desi redAccel erati on, MaxMot or, Posi ti onand Vel ocity.

m Ti neSt anpActi ve: a TRUE value for this field causes the Ti neSt anp field to be updated with each
call to N_Get Axes() .

m Updat e: a TRUE value for this field causes the motion parameters to be loaded into the motor control-
ler for execution upon calling N_Set Axes() . These parameters are: Desi r edPosi ti on, Desi r ed-
Vel oci ty, Desi redAccel erati on, and MaxMot or .

m Ti meSt anp: contains the time in milliseconds that the motion parameters were obtained.
m Mode: contains the movement mode for the axis. It can be set to one of the following posible modes:

N _LI FT_PGSI TI ON_RELATI VE: causes the axis to move to a position relative to the current position
as specified by the Desi r edPosi ti on field.

N_LIFT_POSITION_ABSOLUTE: causes the axis to move to an absolute position (see “Lift Mechanism

35

Convention” table) as specified by the Desi r edPosi ti on field.
N_LI FT_VELQCI TY: causes the axis to move at a velocity specified by the Desi r edVel oci t y field.

St at us: provides a bitmap of possible errors. One or more of these bits will be set if an error occurs
during a movement. To test for a particular error, the value or result can be “ored” with the error bits
described below:

N_LIFT_POS_LIMIT: indicates the positive limit switch has been reached for the axis. This should
never happen, as the software limits travel to never traverse the positive limit of neither the Grip nor
Lift axes after the Lift Mechanism is zeroed.

N_LIFT_NEG_LIMIT: indicates the negative limit switch has been reached for the axis. This should
never happen for the Lift axis, but the Grip axis when fully closed depresses the gripper’s negative
limit switch.

N LI FT_MOTI ON_ERROR: indicates that the motion was unable to complete. This is often due to an
obstacle in the desired path of the axis.

N LI FT_ESTOPR: indicates that the motion is not possible because one or more of the emergency stop
switches is depressed.

N_LI FT_CANNOT _MOVE: indicates that the motion is not possible because the Lift Mechanism is not
zeroed or not deployed.

Desi r edPosi t i on: specifies the desired endpoint position of the axis in units of 0.1 mm. The posi-
tion is either relative to the current position or absolute with respect to the zero position as specified
by the Mode field.

Desi r edVel oci t y: specifies the desired velocity at which the axis should move in units of 0.1 mm/s.

Max Mot or : specifies the percentage of available torque to use for the axis. The possible values range
between 0 and 100, where 100 specifies the default of 100% available torque. For example, this is useful
to set for the gripper when picking up fragile objects.

Accel er at i on: specifies the desired acceleration at which the axis should move in units of 0.1 mm/s:.
Posi ti on: provides the current absolute position of the axis in units of 0.1mm.

Vel oci t y: provides the current velocity of the axis in units of 0.1mm/s.

36

CHAPTER 7: VISION REFERENCE

OVERVIEW

This chapter describes the use of different vision systems available for the Nomad XR4000 and Nomad 200
robots. The Sensus 700 is an embedded vision system with on-board DSP’s for processing images.

SENSUS 450 MONOCHROME VISION

The Sensus 450 is a complete monochrome vision system including a camera and PCI framegrabber card.
The device driver and simple example programs are provided for the user. More elaborate image analysis
algorithms are left to the user to customize.

Running a demo

If your robot is equipped with an auxiliary processor, the vision system is installed on the auxiliary pro-
cessor. Plug a keyboard and VGA monitor into the “Keyboard2” and “VGAZ2” ports to run the demo. If
your robot has a single processor, plug a keyboard and VGA monitor into the “Keyboard1” and “VGAL1”
ports to run the demo.

Through the VGA monitor and keyboard, change directories into/ usr/ | ocal / r obot - devi ces/

dt 3155/ exanpl es/ vi deo and run vi deo. This program will switch video modes on the monitor and
display a grayscale image at about 15 frames per second. Note that the iris of the camera may be closed, result-
ing in little or no image.

If your robot is equipped with two Sensus 450’s, run the video program with command line arguments 0
and 1 to see video from the different systems, for example:

video O
for the first device, and
video 1

for the second device.
SENSUS 460 COLOR VISION

The Sensus 460 is a complete color vision system including a color composite camera and PCI framegrab-
ber card. The device driver and simple example programs are provided for the user. More elaborate image
analysis algorithms are left to the user to customize.

Running a simple demo

If your robot is equipped with an auxiliary processor, the vision system is installed on the auxiliary pro-
cessor. Plug a keyboard and VGA monitor into the “Keyboard2” and “VGAZ2” ports to run the demo. If
your robot has a single processor, plug a keyboard and VGA monitor into the “Keyboard1” and “VGAL1”
ports to run the demo.

Through the VGA monitor and keyboard, change directories to/ usr/ | ocal / r obot - devi ces/
nmet eor / exanpl es/ vi deo and run vi deo to see continuous color video images. You should see a color
image at about 5 frames/second. Note that the iris of the camera may be closed, resulting in little or no image.

If your robot is equipped with two cameras, but one Meteor card, run the video program with the com-
mand line arguments 0 and 1 to see video from the different cameras, for example:

video O

for the first camera, and

video 1
for the second camera.

If your robot is equipped with two Meteor cards, run the video program with two command line argu-
ments, for example: vi deo 1 0 for second card, first camera, vi deo 1 1 for second card, second camera,
and vi deo O for first card, first camera.

SENSUS 700 HIGH SPEED COLOR VISION SYSTEM

The driver, documentation and examples for the Sensus 700 are in the directory/ usr /| ocal / r obot -
nmodul es/ sensus7h directory on the robot. The following sections describe how to run a simple demon-
stration program and how to use the rpc library. More elaborate image analysis algorithms are left to the
user to customize.

Demonstration program

Log onto the robot from an X server and export the display by typing:

export DI SPLAY=<nmachi ne nanme or |P nunber>:0

where “machine name or IP number” is the name of the machine with the X server or its IP address (the IP
address must be used if the name is not included in / et ¢/ host s} file on the robot). You may also need to
run xhost + locally on the X server you are using to give the robot permission to use the X server.

Change directories into/ usr/ | ocal / xr dev/ r obot - modul es/ sensus7h/ host/ vi deo on the
robot and run vi deo. Although it is slow over radio Ethernet, it should pop-up a window and display
grayscale video frames on the X server. Note that the video is actually color, but the display only shows
grayscale.

Using the RPC Library with the Sensus 700
Introduction

The Sensus 700 is an “embedded processing” card. It differs from traditional frame-grabbers in that it has
processing onboard for doing image-processing tasks. The resulting processed data is typically the only
thing that is exchanged between the host computer (486, Pentium) and the vision system. This leaves the
host processor free to do other things, which is very useful in mobile robotics. That is, the host processor
has other things to do such as avoid obstacles, build maps, etc.

This means that an application that uses the Sensus 700 is comprised of two programs that run simulta-
neously — one that runs on the host processor and one that runs on the vision system. These two pro-
grams communicate through the device driver. Typically, the host processor is controlling what the vision
system does by making specific requests such as “where in the image is a particular beacon?” or “do you
see a coke can?”. Once the host processor makes the request, it can do other things until the result comes
back. This computational model resembles a client-server type system.

The Remote Procedure Call (rpc) library makes designing such systems intuitive and easy. For example,
the host makes an rpc request to the vision system that results in a procedure being called on the vision
system. The vision system runs the code in the procedure and returns the result to the host processor. The
host processor receives the result much like it receives data from a procedure that it calls locally, except
this time, the procedure was executed onboard the vision system. Thus the rpc library allows both the
exchange of data and control of execution.

Examples
The best way to learn about the rpc library is to look at the example programs in the following directories:

../host/hworld A simple “hello world” program.

37

38

../ host/rpcexanp Performs several rpc requests to the vision system passing
different data types and using different nechanisns to
recei ve data.

../ host/vi deo Grabs video franes fromthe digitizer and di splays themin
bl ack and white on an X-server.

Let’s look at the r pcexanp program. Inr pcexanp. h there isther pc_t abl e which each program that is

linked with the rpc library MUST have. It consists of a list of possible rpc procedures for that application

and the type of data that are exchanged. For example, the “add” procedure passes three integers to the
vision system (From the Host, FH) and returns one integer From the Vision system (FV). Each entry of the
table always has the list of data types from the vision system first followed by the list of data types from
the host. Each entry in the r pc_t abl e is meant to resemble (as much as possible) a C procedure declara-
tion, namely for “add™:

int add (int argl, int arg2, int arg3);

One thing that the rpc library allows (that C doesn’t) is multiple data types to be returned from a proce-
dure call. An example of thisisinget i nts_i nt _chars. Here, the vision system returns an array of
ints, a single int and an array of chars.

Let’s look at r pcexanp. ¢ to see how to write a program that uses the rpc mechanism. The first call of an
rpc program is the vi s_upl oad() call, which loads the code that is executed on the vision system into
the vision system’s embedded processors. The pathname of the vision system application is given. The
vision application is also written and compiled in C (Parallel C). We will talk about how embedded pro-
grams for the vision system are written and compiled in Section 5.3. The nextcall istorpc_init (),
which initializes various data structures, etc. Next, we make an “add” rpc request to the vision system by
callingrpc_cal | _func(ADD, 10, 20, 30) . The vision system receives this request and adds the three
numbers together. Looking at the vision system code (. ./ vi s/ rpcexanp. c) the “add” procedure gets
called. Notice that it has three arguments as intended. Inside this procedure the vision system returns the
data with ther pc_ret urn_dat a() call. Notice that one integer is returned as indicated in the
rpc_table.

Meanwhile, the host is waiting for the data while waiting inr pc_di spatch(). rpc_di spatch() can
either wait or not wait for data depending on if WAI T or NO_WAI T is passed. Here, we want to wait. If, for
example, we didn’t want to wait, passing NO_ WAI T would fall through and return TRUE if a request was
serviced. This allows the developer to write something like:

rpc_call _func(ADD, 10, 20, 30);
whi | e(! rpc_di spat ch(NO WAIT))

{
/* do sonething useful */
buil d_map();
avoi d_obst acl es();

}

Here, we want to do something else until the result returns. When the result returns from “add” in

r pcexanp, it arrives in an rpc request form from the vision system and the “add” function on the host
side gets called (this time with the result). This is referred to as the “callback” mechanism. The callback
mechanism is convenient for an event-driven coding style. This brings up a key point in the rpc library —
it is a completely symmetric protocol. That is, we’ve restricted our discussion to rpc requests that originate
from the host. The vision system can originate requests as well, hence making the rpc protocol symmetric
(as we’ve seen already in hwor | d and r pcexanp, pri nt f () executed in the vision system is an rpc
request that originates from the vision system to the host). For example, if the vision system had a piece of
code that detected obstacles in the path of the robot, the vision system may make an rpc request to the host
hence notifying of the possible collision condition. (without the host requesting the information) This is

39

accomplished with r pc_cal | _func() from code running on the vision system in exactly the same way
we have described.

The other data return mechanism (other than callback) is the “select” mechanism, which gets its name
from the Unix sel ect () system call. The select mechanism allows the return data to be retrieved with a
library call instead of a callback. Notice inr pcexanp therpc_sel ect _func() call after the

rpc_cal |l _func() . This call waits until the sum result returns from the vision system and puts it in the
resul t variable. Notice that the WAIT option was used. We could have used NO_WAI T in much the same
way we use it in the r pc_di spat ch() example described above. That is, if NO_WAI T was used,
rpc_sel ect _func() would return TRUE if the data was returned and FALSE otherwise. For example:

rpc_call _func(ADD, 10, 20, 30);
whil e(!rpc_select _func(WAI'T, ADD, NULL, &result))

{
/* do something useful */
buil d_map();
avoi d_obst acl es();

{

printf(“Result has arrived: %d\n”, result);

This allows us to do a useful task until the result from add arrives. The result is conveniently returned in a
local variable.

Theget _i nts_int_chars() procedure in rpcexamp demonstrates passing different data types, namely
integer and character arrays. The only difference here is the way in which arrays are passed. Both the size
of the array and the pointer must be passed in order for the rpc library and the receiver to deal with it
properly. Also notice inr pc_sel ect _func() that the buffer “buf” is passed (where NULL was passed
previously in r pcexanp). This buffer space is used by the rpc library to write received data into. It must
be big enough to accommodate ALL of the expected array data. In r pcexanp the buffer is 1024 in size
which makes it plenty large for the 7 integers and 8 characters that are sent in array form.

The intrinsic rpc_t abl e

The intrinsic r pc_t abl e is a table of special calls that are always available to the developer and serves
essentially the same function that | i bc does. The key purpose is to provide the embedded vision system
the ability to share resources with the host computer that it doesn’t have (e.g. console, display, hard drive,
etc) It is intended to be augmented with calls the developer deems useful. Currently, there are calls for dis-
playing images, saving images in tiff format and printing text. Other capabilities such as opening, reading
and writing files are good examples of useful additions. The intrinsicr pc_t abl eisinrpcintri. c.

Intrinsic procedures called from the vision system

printf(char *format, ...)

We've seen pri nt f () usedin hworl d and r pcexanp. It behaves identically to standard | i bc
printf () and causes the desired text to be printed on the host’s console that the application is running
from.

voi d disp_8image(char *image, int xws, int yws,

int x_offset, int y_offset,

int gx, int gy, int words_per_row, int fornmat)
If a display window does not exist, this causes an X window to pop up on the host’s X server (or remote X
server pointed to by the host’s DISPLAY environment variable.) If a display window does exist, it simply
overwrites the current display. The arguments are as follows:

i mage: Array containing the inage.
XWS: Size of the x dinmension X wi ndow

40

YWS: Size of the y dinmension X wi ndow

x_of fset: x offset into the X window to display the inage (i mge can be
smal l er than the X wi ndow)

y_of fset: y offset into the window to display the i mage (i mage can be
smal l er than the X wi ndow)

gx: wi dt h of image (x dinmension)

ay: hei ght of image (y di nension)

wor ds_per _row. numnber of pixel words per row in the inmage

format: One of either:

AVG_GREYSCALE: Takes RGB data in “image” and displays as
grayscale

LSBYTE: Takes least significant 8 bits (remember, a ‘C40 char
is 32 bits) and displays as grayscale.

void wite_8image(char *inage, int gx, int gy, int words_per_row,
int format, char *fil enane)

Writes i mage to the host’s file system in tiff image format. The arguments are as follows:

i mage: Array containing the inage.
gx: wi dth of image (x dinension)
ay: hei ght of inmage (y di nension)
wor ds_per _row. nunber of pixel words per row in the inage
format: One of either:
AVG_GREYSCALE: Takes RGB data in “image” and saves as
grayscale.
LSBYTE: Takes least significant 8 bits (remember, a ‘C40 chars

32 bits) and saves as grayscale
flename: Name of saved image file.

voi d crosshair(int x0, int y0, int size, int color)

Displays a square crosshair on the current X window. If a crosshair already exists, the existing crosshair is
moved to the newly specified location. The arguments are as follows:

x0: x dimension location in X window

y0: y dimension location in X window

size: width and height of crosshair in pixels
color: color in grayscale: 0 is black; 255 is white

Intrinsic procedures called from the host
These are available for the host program to call.
voi d get_8image(int xg, int yg, int gx, int gy)

This causes an rpc request to the vision system that then calls di sp_8i mage() } of the current unproc-
essed video data. The arguments are as follows:

Xg: x dimension offset into the 480x512-video image.
yg: y dimension offset into the 480x512-video image.
ox: x dimension size of image (width)
yg: y dimension size of image (height)

void get_write_8image(int xg, int yg, int gx, int gy)

This causes an rpc request to the vision system that then callswr i t e_8i mage with the current unproc-
essed video data. The arguments are the same as get _8i nage() .

Compiling Sensus 700 code

The Sensus 700 uses the Texas Instruments TMS320C44 digital signal processor (DSP). Which means that
we compile the Sensus 700 code with a cross compiler. Unfortunately, the compiler only runs under DOS.

41

Linux has support for dosemnu, which is a DOS emulator. This should be installed on the hard-drive that
came with the Sensus 700. To invoke, type dos at any robot console, or xdos if you are connected to an X
server. Dosemnu comes up in drive E, which is the DOS partition. (the DOS partition can be accessed in
Linux in the / dos directory) When you want to exit dosemnu, type exi t enu and it will return you to
Linux.

Change directories into \ sensus7h\ . Notice that this directory has many of the same directories that the
~/ sensus7h/ host directory does in Linux. This is where the corresponding vision system code resides
for applications using the Sensus 700. Change into the r pcexanp directory and type make. It should com-
pile with no errors. New Sensus 700 applications can be put in the \ sensus7h\ directory and the corre-
sponding make. bat can be created. It is recommended that \ sensus7h\ vi s\ r pcexanp\ nake. bat
serve as a good example. Simply copy it into the newly created application directory and replace occur-
rences of r pcexanp with the name of the new application.

Also, as a convention it is nice to put the header file that contains the r pc_t abl e in the DOS partition and
make a soft link to it from the Linux partition. For example, in Linux type:

I's -1 rpcexanp.h

while inthe / r oot / sensus7h/ host / r pcexanp directory. This will indicate that it is a soft link. To cre-
ate a soft link, for example, r pcexanp. h type:

In -s ../../vis/rpcexanp/rpcexanp. h
while inthe/ r oot / sensus7h/ host / r pcexanp directory. For more information consult the man
pages of | n.

Sensus 700 video

The following are video-related functions:

vram

On the frame grabber module in the Sensus 700 is a 1M-byte video RAM where captured frames are
stored. Itis arranged as a 512 by 512 array of 4-byte unsigned integers. A call to capt ur e_si ngl e() puts
a frame of data in this area of memory. VRAMis a global array that is declared when you include cfg44.h}
and it is declared as follows:

extern unsigned int *vram

For NTSC cameras, the first 32 rows of vr amcontain garbage. It is useful to declare a modified version of
vram as follows:

unsi gned int *nvram=(unsigned int *)(vram+ 32*512);

Hence for NTSC cameras, the resulting image is 480 rows by 512 columns. In mvr am(described above) this
is stored beginning with the upper left of the image and working its way across the first scan line, which
ends at mvr am+ 511. mvr am+ 512 begins the second scan line and so on, down the image.

The ints in vr amcan be in either grayscale or RGB. The default is RGB and it is stored as follows for each
4-byte pixel:

Byte3 Byte2 Bytel ByteO

Empty Blue Green Red

Consult the HECFG44 manual if you want to change pixel and capture formats.

capture_single()

42

Grabs a single frame of video data and puts it in vr ani, a global array that is declared when you include
cf g44. h}. For NTSC cameras, the image is 480 rows by 512 columns.

video_init()
This MUST be called before calling capt ure_si ngl e() }.
Miscellaneous notes

The TMS320C44

To optimize execution speeds, the ‘C44 DSP cannot address memory in pieces smaller than 32 bits. This
results in chars, shorts, ints, longs, and floats ALL being 32 bits in length. The only exception are doubles
which are 64 bits. This makes writing code for the ‘C44 quite tricky if you don’t keep this in mind.

CHAPTER 8 - PROGRAMMING REFERENCE

QUICK REFERENCE

Communication Commands

N Initializedient -initialize the communication
N_Connect Robot - connect to a given robot

N_Di sconnect Robot - disconnect from a given robot
N_Set Ti mer - set the timeout period of the robot
N_CGet Ti mer - get the timeout period of the robot
N_Speak - download a string to the speech card

Base Motion Setting Commands

N_Set Axes - sets the axes position, velocity, and acceleration
N_Set I nt egr at edConf i gur ati on - sets the integrated configuration
N_Set Joyst i ck - sets parameters for software joystick control

Base Motion Parameters Retrieving Commands

N_Get Axes - gets the current axes position, velocity and acceleration
N_Cet I nt egr at edConf i gur ati on - gets the integrated configuration

Lift Mechanism Motion Setting Commands

N_Set Li ft - sets the motion parameters for the Lift Mechanism
N _Depl oyLi ft - deploys the Lift Mechanism

N Retract Li ft - retracts the Lift Mechanism

N _Zer oLi ft - zeroes the Lift Mechanism

Lift Mechanism Retrieving commands
N_GCet Li ft - gets configuration information about the Lift Mechanism
Sensing Parameters Setting Commands

N_Set Laser Confi gur at i on - sets the laser configuration
N_Set Sonar Conf i gur at i on - sets the sonar configuration

Sensing Parameters Retrieving Commands

N _Get Bat t ery - gets the battery data for the given robot
N_GCet Bunper - gets the bumper data for the given robot
N_CGet Conpass - gets the compass data for the given robot
N_Get | nf r ar ed - gets the infrared data for the given robot
N_Cet Laser - gets the laser data for the given robot

N_Get S550 - gets the Sensus 550 laser data for the given robot
N_Get Sonar - gets the sonar data for the given robot

N_Get Sonar Confi gur at i on - gets the sonar configuration
N_Get St at e - gets the current state for the given robot

N_Cet Robot St at e - get the N_Robot St at e Structure

44

N_CONNECTROBOT

NAME
N_Connect Robot

PURPOSE

To connect to a given robot.

SYNTAX

i nt N_Connect Robot (| ong Robot1D);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROCR - success;

N_UNI NI TI ALI ZED- N_InitializeClient has not yet been called
N_ROBOT_NOT_FOUND - the given robot ID was not registered with the scheduler.
N_CONNECTI ON_FAI LED - connection failed;

N_QOUT_OF_ MEMORY - could not allocate data structures.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function requests a connection to the robot with the specified Robot | D. Such a connection is needed
before the program can send any commands to the robot.

EXAMPLES
N _Connect Robot. c

#i ncl ude <stdio. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
switch (N_ConnectRobot(1))

{

case N_NO_ERROR:
printf(“Successfully connected to Robot\n”);
break;

case N_ROBOT_NOT_FOUND:
printf(“Robot not found\n”);
break;

case N_CONNECTION_FAILED:
printf(“Connection failed\n”);
break;

}
N_Di sconnect Robot (1) ;

exit(0);
}

SEE ALSO

N_Di sconnect Robot

45

46

N_DISCONNECTROBOT

NAME

N _Di sconnect Robot

PURPOSE

To disconnect from a given robot.

SYNTAX

i nt N _Di sconnect Robot (1 ong Robot1D);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROCR - success.

N_CONNECTI ON_FAI LED - the connection to this robot no longer exists.
N_ROBOT_NOT_FOUND - robot not found.

UPDATED GLOBALS

None

DESCRIPTION

This function requests a close to the connection with the robot with the specified Robot | D.

EXAMPLES

N _Di sconnect Robot . c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);
switch (N_DisconnectRobot(1))

{
case N_NO_ERROR:

printf(“Successfully disconnected from Robot\n");
break;

case N_CONNECTION_FAILED:
printf("Connection was lost\n");

break;

case N_ROBOT_NOT_FOUND:
printf(“Robot not found\n”);
break;

}

exit(0);
}

SEE ALSO
N_Connect Robot

47

N_DEPLOYLIFT

NAME
N _Depl oyLi ft
PURPOSE

To deploy the Lift Mechanism and permit control of its axes.

SYNTAX

int N _DeployLift(long RobotlD);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROCR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_UNKNOWN_ERROR - the motion was not able to execute.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

This function initiates the deployment of the Lift Mechanism which may reside inside the robot in a
retracted state. In general, before you attempt to move the either the Lift or the Grip axesa call to

N _Depl oyLi ft () should be made to ensure that the mechanism is deployed. If it is not deployed, an
error will be returned when a movement is attempted, but no movement will result.

EXAMPLES
N Depl oyLift.c

#i ncl ude <stdi o. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()
{

struct N_RobotState *state;
struct N_LiftController *Icont;

N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

/* zero lift -- but only if necessary */
N_ZeroLift(1, FALSE);
N_DeployLift(1);

}

/* wait for lift to deploy */
do
{
state = N _Get Robot State(1);
| cont=&(state->LiftController);
}

while (Il cont->lnProgress);

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO

N RetractlLift

49

50

N_GETAXES

NAME
N_Get Axes

PURPOSE

To fill the N_Robot St at e Structure axes encoder data from the robot sensors.

SYNTAX

int N Get Axes(long RobotlD);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROCR - success.

N_ROBOT_NOT_FOUND - robot not found.

N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.
N_UNKNOWN_ERROR - Nrobot failed to retrieve the requested information.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function gets the specified robot’s configuration for all of the robot’s axes and updates the
N_Robot St at e Structure.

struct N_Axi sSet

{
BOOL d obal ;

unsi gned char Status;
N_CONST unsi gned int Axi sCount;
struct N Axis Axi s| N MAX AXI S COUNT];
i
m { obal : Only used by XR4000 series robots. When this parameter is set to TRUE, it puts the mobile
base axes in “global” or “world” mode after which control for the mobile base is with respect to the
fixed global reference frame. The global reference frame is set when the robot is powered up and
“zeroes” or when N_Set | nt egr at edConf i gur ati on() is called. While in global mode (G o-
bal =TRUE), movement of the rotation axis will not change the direction of the x or y axis movement.
For example, simultaneous movement of the Rotation and Y axes will cause a pirouette (motion in a
straight line while spinning.)

When this parameter is FALSE, the mobile base axes are controlled with respect to a “local” or “joint”
reference frame. For example, simultaneous movement of the Rotation and Y axes will cause the robot
to move in a circle -- that is, the robot will constantly move forward, but rotation causes the Y direc-
tion to change, producing a circle.

m St at us: one of the following values:

N_AXES_READY: This status indicates that the axes are available for movement.
N_JOYSTI CK | N_USE: This status indicates that the base is being controlled via joystick.
N_ESTOP_DOWN: This status indicates that one or more of the emergency stop buttons is depressed,

preventing the robot from moving.
N_MOTI ON_ERROR: The last executed motion failed.

struct N _Axis

{

BOOL Dat aActi ve;

BOOL Ti neSt anpActi ve;

BOOL Update;

unsi gned | ong Ti meSt anp;

char Mode;

| ong DesiredPosition;

| ong Desi redSpeed;

| ong Accel eration;

| ong Traj ectoryPosition;

| ong TrajectoryVel ocity;

| ong Actual Position;

| ong Actual Vel ocity;

BOOL | nProgress;

| ong TrajectoryVel ocity;
Dat aAct i ve: A value for this parameter causes the values in this structure to be updated -- namely
Mode, DesiredPosition, DesiredSpeed, Accl eration, TrajectoryPosition, Trajec-
toryVel ocity, Actual Position, Actual Vel ocity, I nProgress, and Traj ect oryVe-
locity.
Ti meSt anpAct i ve: A TRUE value for this parameter causes the TimeStamp parameter to be
updated.
Updat e: A TRUE value for this parameter causes the input values (Desi r edSpeed, Desi r edPosi -
tion,and Accel er ati on) to be loaded into the set of working values for this axis when a call to
N_Set Axes() is made. The Updat e parameter allows one or more axes to be loaded with new input
values simultaneously.
Ti meSt anp: the time value in milliseconds that the axis values were measured.
Mbde: One of the following possible modes:
N_AXI S_PGCSI Tl ON_RELATI VE: Specifies that the axis move relative to the current position.
N_AXI S_POCsI TI ON_ABSOLUTE: Specifies that the axis move to an absolute position with respect to
the absolute zero location of the axis.
N_AXI S_VELQC! TY: Specifies that the axis move with a constant velocity.
N_AXI S_STOP: Specifies that the axis decelerate to zero velocity.
Desi redPosi ti on: Specifies the desired endpoint position of the axis. The units are in millimeters
for translational axes and milliradians for rotational axes. When Mode is set to
N_AXI S_PGCSI TI ON_RELATI VE or N_AXI S_PCSI TI ON_ABSCLUTE this specifies the endpoint posi-
tion relative to the current position or the absolute position, respectively. This parameter is not used
when Mode issetto N AXI S _VELCCI TY. This parameter can be positive or negative.
Desi r edSpeed: This specifies the desired speed at which to move to the DesiredPosition, or the con-
stant speed at which to move if Mode is setto N_AXI S_VELCQOCI TY. The units are in millimeters/sec-
ond for translational axes and milliradians/second for rotational axes.
Accel er at i on: Constrains the rate at which the speed can change. The units are in millimeters/

51

52

second: for translational axes and milliradians/second: for rotational axes. This parameter can only
be positive.

m Traj ectoryPosi tion:Provides the current position of the trajectory generator.
m Traj ectoryVel ocity: Provides the current velocity of the trajectory generator.

m Actual Posi ti on: Provides the actual position of the axis. The value of this field is based on the set-
ting of the Global field in N_AxisSet. If in Joint mode (d obal =FALSE), this field provides the joint
position of this axis. If in @ obal mode (3 obal =TRUE), this field provides the position of the axis in
a global reference frame. In G obal mode, this value is equivalent to the corresponding field in the
N_I nt egr at or structure.

m Actual Vel oci ty: Provides the actual measured velocity of the axis. This value, like ActualPosition
is based on the setting of the Global field in N_Axi sSet . In Global mode (@ obal =TRUE), this field
provides a value that is with respect to a global reference frame. In Joint mode, (@ obal =FALSE) this
field provides a value that is with respect to the local reference frame.

m | nProgress: Provides a boolean value that informs the user that an axis is currently moving.

The interpretation and range for the axes and their values according to the robot type are given below:

Nomad 200 XR4000
AxisOis Translation X
Axis1lis Steering Y
AXis2is Turret Theta
Axis 0 velocity range [-609mm/s, 609mMm/s] [-1500mm/s, 1500mm/s)
Axis 1 velocity range [-785mRad/s, 785mRad/s] [-1500mm/s, 1500mm/s)
Axis 2 velocity range [-785mRad/s, 785mRad/s] [-5000mRad/s, 5000mRad/s]
Axis 0 acceleration range [Omm/s?, 762mm/s?] [Omm/s?, 1500mm/s?]
Axis 1 acceleration range [OmRad/s?, 872mRad/s?] [OmmY/s?, 1500mmy/s?]
Axis 2 acceleration range [OmRad/s?, 872mRad/s?] [OmRad/s?, 5000mRad/s?]
EXAMPLES
N_Get Axes. c

#i ncl ude <stdio. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{

struct N_RobotState *state;
struct N_Axis *axis;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT) ;

N_Connect Robot (1) ;
state = N _Get Robot State(1);
axi s = &(state->Axi sSet. Axi s[N XTRANSLATI ON]) ;

whi | e(1)

{
N _CGet Axes(1);
printf(*Position %d mm\n”, axis->CurrentPosition);

}
N_DisconnectRobot(1);

exit(0);
}

SEE ALSO
N_SetAxes, N_GetState

53

54

N_GETBATTERY

NAME

N GetBattery

PURPOSE

To fill the N_Robot St at e Structure with battery data.

SYNTAX
int N GetBattery(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERRCR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N Robot St at e

DESCRIPTION

The Bat t er ySet structure simply holds an array of pointers to Battery structures. Battery data is avail-
able for the XR4000 only.

struct N _BatterySet

{
struct N Battery Battery[N MAX BATTERY_COUNT] ;

BOOL Dat aActi ve;
b

The mapping between the Battery array position and the physical batteries is given below:

struct N Battery
{

s

| ong Vol t age;

m Vol t age: Provides the current battery voltage in millivolts.

EXAMPLES

#i ncl ude <stdi o. h>
#i ncl ude "Nclient.h"

#defi ne SCHEDULER_HOSTNAME "f at boy"
#defi ne SCHEDULER_PORT 7073

int main()

{

struct N RobotState *state;

struct N Battery *battery;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
battery = &(state->BatterySet.Battery[0]);

N GetBattery(1);
printf("Battery Voltage %\ n", battery->Voltage);

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO
N Get State

55

56

N_GETBUMPER

NAME
N_Get Bunper

PURPOSE

To fill the N_Bunper Set field i n N _Robot St at e with data from the tactile sensors.

SYNTAX
i nt N_Get Bunper (|l ong Robot1D);

ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROCR - success;
N_ROBOT_NOT_FOUND - robot not found;
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St at e

DESCRIPTION
This command retrieves the bumper data from the tactile sensors and updates the N_Robot St at e Structure.

The bumper controller structure holds all the configuration data that is valid for all the bumper sets on the
robot. Bumper sets are groups of tactile sensors that act together. The bumper controller structure has an
array of N_Bunper Set structures, each describing one particular set.

Forty-eight bi-level sensing elements surround the top and bottom perimeters of the XR4000, providing
both the exact location of contact as well as its contact force (none, low, and high). A light touch on each bi-
level tactile switch will result in a green LED, while a firm press will light the red LED. Rugged energy
absorbing rubber molding protects the top and bottom perimeters of sensing elements.

The Nomad 200 has two sets of 10 bumpers, going counterclockwise from 0 to 9, with 0 in front.

The XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door for a total of 6 sets:

Set 0 = top set on front door (sensor #0-7)

Set 1 = bottom set on front door (sensor #0-7)

Set 2 = top set on left door (sensor #0-7)
Set4,5 Set 3 = bottom set on left door (sensor #0-7)

Set 4 = top set on right door (sensor #0-7)

Set 5 = bottom set on right door (sensor #0-7)

Set2,3

57

struct N_BunperController
{
N_CONST unsi gned i nt Bunper Set Count ;
struct N_Bunper Set Bunper Set [N MAX_BUMPER_SET_COUNT] ;

H
The configuration data used globally by all the bumper sets on the robot are:
m Bunper Set Count : the number of bumper sets in the controller.

The N_Bumper Set structure is defined as follows:

struct N _Bunmper Set

{
BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;

N_CONST unsi gned i nt Bunper Count;

struct N_Bunper Bunper[N_MAX BUWMPER COUNT] ;
i
It contains an array Bunper of bumper structures plus a number of configuration parameters. The config-
uration parameters are:

m The Dat aAct i ve flag: TRUE if bumper data for this set is to be updated.

m TheTi meSt anpAct i ve flag: TRUE if the time (time of acquisition of the tactile range) is to be updated
for this set.

m Bunper Count : the number of bumpers in the set.

The XR4000 also has 4 “door bumpers” for each door, and these are stored at the end of the top set of each
door (indexes 8 through 11). For instance, bumper set 2 on the XR4000 is the top set of bumpers on the sec-
ond door, so the readings for the door bumpers on the second door will be stored in bumper set 2. So there
are actually 12 readings in bumper set 2. This is why N_XR4000_BUMPER _COUNT is 12 instead of 10. Door
bumper readings are either N BUMPER_NONE or N BUMPER_LOW

The N_Bunper structure is the lowest level in the general description of the tactile system.

struct N_Bunper
{

char Readi ng;
unsi gned | ong Ti meSt anp;

};

The values defined for each bumper are:

m Readi ng: one per bumper and it will always be one of the three bumper value constants defined in
Ncl i ent . h. For the Nomad 200, bumpers have only the N BUMPER _NONE or N BUMPER _LOWvalue.
For the XR4000, they can also be N BUMPER HI GH (for a hard hit).

m Ti neSt anp: the time of the tactile event (collision).

58

EXAMPLES
N_Get Bunper. c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{

struct N_RobotState *state;
struct N_Bumper *bumper;
short i;

N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

state = N_GetRobotState(1);
bumper = state->BumperController.BumperSet[0].Bumper;

while(1)

{
N_GetBumper(1);
printf(“BumperSet 0: “);

for (i=0;i<8;it++)
{
printf(“%d “, bumper[i].Reading);

}
printf(“\n”);

N_DisconnectRobot(1);
exit(0);
}

SEE ALSO
N_GetState

59

N_GETCOMPASS

NAME
N_Get Conpass
PURPOSE

To fill the N_Robot St at e Structure with heading data from the compass.

SYNTAX

i nt N_CGet Conpass(| ong Robotl|D);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This command retrieves the heading data from the compass and updates the N_Conpass field in the
N_Robot St at e Structure.

The Conpass structure is defined as follows:

struct N_Conmpass

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;
BOOL Dat aActi ve;
BOOL Ti nmeSt anpActi ve;

H
m The Readi ng field represents the heading of the turret with respect to the magnetic north in milliradians
m Ti meSt anp: the time of the acquisition of the reading

m The Dat aAct i ve flag: TRUE if compass data for this set is to be updated

m TheTi neSt anpAct i ve flag: TRUE if the time (time of acquisition of the compass data) is to be
updated for this set.

EXAMPLES

N_Get Conpass. c

#i ncl ude <stdi o. h>
#i nclude "Nclient.h"

#def i ne SCHEDULER_HOSTNAME "f at boy"
#def i ne SCHEDULER_PORT 7073

int main()

60

struct N RobotState *state;
struct N _Conpass *conpass;
short i;

N_InitializeCient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
conpass = &(st at e->Conpass);

whi | e(1)
{
N_Get Conpass(1);
printf("Conpass Direction %l \n", conpass->Reading);

}
N_Di sconnect Robot (1) ;

exit(0);

SEE ALSO
N Get State

61

N_GETINFRARED

NAME
N Getlnfrared
PURPOSE

To fill the N_Robot St at e Structure with range data form the infrared proximity sensors.

SYNTAX
int N Getlnfrared(long RobotlID);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

This command retrieves range data from the infrared proximity sensors and updates the
N_Robot St at e Structure.

The infrared controller structure holds all the configuration data that is valid for all the infrared sets on the
robot. Infrared sets are groups of infrared sensors that act together. The infrared controller structure has an
array of N_I nf r ar edSet structures, each describing one particular set.

The Nomad 200 has one set of 16 infrared, going counterclockwise from 0 to 15, with 0 in front.

The XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door for a total of six sets:

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set2,3

62

struct N_InfraredController

{
BOOL | nfr ar edPaused;

N_CONST unsi gned int InfraredSet Count;
struct N InfraredSet |InfraredSet[N _MAX | NFRARED SET_COUNT];

b

The configuration data used globally by all the infrared sets on the robot are:

m | nfraredPaused: When set to TRUE, all the infrared sensors will be stopped.
m | nfraredSet Count : The number of infrared sets in the controller.

The N_I nfraredSet structure is defined as follows:

struct N_InfraredSet

{
BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
N_CONST unsi gned int InfraredCount;
struct N Infrared | nfrared] N MAX | NFRARED COUNT] ;

s
It contains an array | nf r ar ed of infrared structures (one per infrared transducer in the set), plus a num-
ber of configuration parameters. The configuration parameters are:

m The Dat aAct i ve flag: TRUE if infrared data for this set is to be updated -- namely the data in the
Infrared array.

m TheTi neSt anpAct i ve flag: TRUE if the TimeStamps in the Infrared array is to be updated for this
set.

m | nfraredCount :the number of infrared proximity sensors in the set.
The N_I nf r ar ed structure is defined as:

struct N Infrared

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;

};

The values defined for each infrared are:

m Readi ng: a value from 0 to 255 representing the amount of reflected infrared energy returned from a
closeby object. A value of 0 represents no energy reflected (far object) while a value of 255 represents
maximum energy reflected (close object). Should a distance value be needed, the user should build a
calibration table by measuring the energy returned by a material sample (representative of what can
be found in the environment), at various distances.

m Ti meSt anp: the time of the acquisition of the raw value.

EXAMPLES

N Getlnfrared.c

#i ncl ude <stdi o. h>

#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

struct N RobotState *state;
struct N Infrared *infrared,
short i;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
infrared = state->InfraredController.InfraredSet[0].Infrared;

whi | e(1)

{
N CetlInfrared(l);
printf(“InfraredSet 0: “);
for (i=0;i<8;it++)
printf(“%d “, infrared[i].Reading);
printf(“\n”);
}

N_DisconnectRobot(1);
exit(0);
}

SEE ALSO
N_GetState

63

64

N_GETINTEGRATEDCONFIGURATION

NAME
N_Cet | nt egr at edConfi gurati on
PURPOSE

To fill the N_Robot St at e Structure with integrated configuration data.

SYNTAX
i nt N_GetlntegratedConfiguration(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERRCR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St ate
DESCRIPTION

This command retrieves the integrated configuration from the robot and updates the N_Robot St at e
Structure.

The N_I nt egr at or structure contains the geometric configuration of the robot with respect to a globally
fixed coordinate frame. For example, the XR4000 has a configuration consisting of its x, y location and its
rotation angle since it was powered on or since the last call to N_Set | nt egr at edConfi gurati on.

struct N_Integrator
{
BOOL Dat aActi ve;
BOOL Ti neSt anpActi ve;
unsi gned | ong Ti meSt anp;
| ong X;
long v;
| ong Steering;
| ong Rotati on;

}

EXAMPLES

N _Cet I nt egr at edConfi guration.c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{

struct N RobotState *state;
struct N _Configuration *integrated_configuration;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
i ntegrated_configuration =&state->lntegrator;

while (1)

{

N _Cet I nt egrat edConfi gurati on(1);
printf(“Integrated Configuration: x %d y %d Steering %d
Rotation %d\n”,

integrated_configuration->Xx,
integrated_configuration->y,
integrated_configuration->Steering,
integrated_configuration->Rotation);

}

N_DisconnectRobot(1);

exit(0);

}

SEE ALSO

N_ SetIntegratedConfiguration

65

66

N_GETLIFT

NAME
N_Get Li ft

PURPOSE

To retrieve configuration information about the Lift Mechanism’s axes.

SYNTAX

int N GetLift(long RobotlD);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROCR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client command

UPDATED GLOBALS

None

DESCRIPTION

This function retrieves information about the Lift and Grip axes of the Lift Mechanism and stores the
resultsinthe Li ft Control | er structure in N_Robot St at e.

The Li ft Control | er structure has the following definition:

struct N LiftController
{

BOOL Depl oyed;

BOOL | nProgress;

struct N LiftAxis Axis[N_LIFT_AXI'S COUNT];
s

The fields are described as follows:

m Depl oyed: provides information on whether the Lift Mechanism is fully deployed or not. A TRUE
value indicates that the Lift mechanism is fully deployed.

m | nProgress:aTRUE value in this field indicates that the Lift Mechanism is currently being retracted,
deployed, or zeroed (i.e.duetoacallto N_Depl oyLi ft (), N RetractLift(),orN_ZeroLift()).
While this field is set, no motion commands to the Lift mechanism are accepted.

m AXi s:an array that contains the motion parameters for the two controllable axes: the Lift and Grip
axes. The two possible array indices are respectively N_LI FT and N_GRI P.

The axis parameters are contained inthe N_Li f t Axi s structure, which is defined as:

struct N_LiftAxis
{
BOOL Dat aActi ve;
BOOL Ti meSt anpActi ve;
BOOL Updat e;
unsi gned | ong Ti meSt anp;

67

char Mode;
| ong St at us;
| ong DesiredPosition;
| ong DesiredVel ocity;
| ong Accel erati on;
| ong MaxMot or;
| ong Posi tion;
| ong Vel ocity;
s
m Dat aActi ve: a TRUE value for this field causes the parameters of this structure to be updated with
each call to N_Get Axes() -- namely Mbde, St at us, Desi r edPosi ti on, Desi redVel ocity,

Accel erati on, MaxMot or, Posi ti on and Vel oci ty.

m Ti meSt anpActi ve: a TRUE value for this field causes the TimeStamp field to be updated with each
call toN_Get Axes().

m Updat e: a TRUE value for this field causes the motion parameters to be loaded into the motor control-
ler for execution upon calling N_Set Axes() .

m Ti meSt anp: contains the time in milliseconds that the motion parameters were obtained.
m Mode: contains the movement mode for the axis. It can be set to one of the following possible modes:

N _LI FT_PGCSI TI ON_RELATI VE: causes the axis to move to a position relative to the current position
as specified by the Desi r edPosi ti on field.

N LI FT_PGCsSI TI ON_ABSOLUTE: causes the axis to move to an absolute position (see table above) as
specified by the Desi r edPosi t i on field.

N_LIFT_VELOCITY: causes the axis to move at a velocity specified by the DesiredVelocity field.

m St at us: provides a bitmap of possible errors. One or more of these bits will be set if an error occurs
during a movement. To test for a particular error, the value or result can be “ored” with the error bits
described below:

N_LI FT_PGCS_LI M T: indicates the positive limit switch has been reached for the axis. This should
never happen, as the software limits travel to never traverse the positive limit of neither the Grip nor
Lift axes after the Lift Mechanism is zeroed.

N LI FT_NEG LI M T: indicates the negative limit switch has been reached for the axis. This should
never happen for the Lift axis, but the Grip axis when fully closed depresses the gripper’s negative
limit switch.

N_LI FT_MOTI ON_ERROR: indicates that the motion was unable to complete. This is often due to an
obstacle in the desired path of the axis.

N_LI FT_ESTOPR: indicates that the motion is not possible because one or more of the emergency stop
switches is depressed.

N_LI FT_CANNOT_MOVE: indicates that the motion is not possible because the Lift Mechanism is not
zeroed or not deployed.

m DesiredPosi ti on: specifies the desired endpoint position of the axis in units of 0.1 mm.. The posi-
tion is either relative to the current position or absolute with respect to the zero position as specified
by the Mode field.

m DesiredVel oci ty: specifies the desired velocity at which the axis should move in units of 0.1 mm/s.

m DesiredAccel erati on: specifies the desired acceleration at which the axis should move in units of
0.1 mm/s:

m MaxMot or : specifies the percentage of available torque to use for the axis. The possible values range
between 0 and 100, where 100 specifies the default of 100% available torque. For example, this is useful
to set for the gripper when picking up fragile objects.

m Posi ti on: provides the current absolute position of the axis in units of 0.1mm.

m Vel oci ty: provides the current velocity of the axis in units of 0.1mm/s.

EXAMPLES

N GetLift.c

#i ncl ude <stdi o. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_LiftController *Ilcont;

N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

[* zero lift -- but only if necessary */
N_ZeroLift(1, FALSE);
/* Lift Mechanism must be deployed in order to move */
N_DeployLift(1);
/* wait for lift to deploy */
do
{
state = N_GetLift(1);
Icont=&(state->LiftController);

}

while (Icont->InProgress);

/* set the gripper torque to 50% */
Icont->Axis[N_GRIP].MaxMotor=50;

/* move the gripper to the specified absolute position */
Icont->Axis[N_GRIP].Mode=N_LIFT_POSITION_ABSOLUTE;
Icont->Axis[N_GRIP].DesiredVelocity=300; /* move at 30 mm/s */
Icont->Axis[N_GRIP].DesiredAcceleration=300; /* accelerate at 30 mm/s/s */
Icont->Axis[N_GRIP].DesiredPosition=0; /* move the gripper to zero */

N_SetLift();
Icont->Axis[N_GRIP].DataActive=TRUE;

/* wait until finished */
do

{

N_GetLift(1);

printf(“Grip velocity %d\n”, Icont->Axis[N_GRIP].Velocity);
}
while (Icont->Axis[N_GRIP].Velocity != 0);

N_DisconnectRobot(1);
exit(0);

SEE ALSO
N_Set Li f t

69

70

N_GETS550

NAME
N_Get S550
PURPOSE

To fill the N_Robot St at e Structure with range data from the laser sensor (Sensus 550).

SYNTAX
i nt N_Get S550(1 ong Robot 1 D);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERRCR - success.

N_I NVALI D_ARGUMENT - invalid requested points.

N_SENSOR_NOT_READY - the device has not yet initialized itself.
N_ROBOT_NOT_FOUND - robot not found.

N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This command retrieves data from the laser sensor (Sensus 550) and puts it in the N_S550Set field of the
N_Robot St at e Structure.

struct N_S550Set

{
N_CONST unsi gned int S550Count;

struct N _S550 S550[N_MAX S550 COUNT];
s

m S550Count : the number of Sensus 550 laser devices in the set
The N_S550 structure is defined as:.

struct N_S550

{
N_CONST unsi gned int Total Poi nts;

unsi gned i nt Request edPoi nts;

unsi gned | ong Readi ngs[N_MAX_S550_ PO NTS] ;
unsi gned char StatusFl ags[N MAX _S550_PQO NTS] ;
unsi gned char SummaryFl ags;

unsi gned | ong Ti meSt anp;
BOOL Dat aActi ve;
BOOL Ti meSt anpActi ve;

1
m Tot al Poi nt's - The number of points in the Readings array. Tot al Poi nt s gets set upon initializa-
tion to either 180 or 361 points according to the model used and should not be modified.

71

m Request edPoi nt s - The number of measurements that the user desires per laser scan. This can be of
a one of a set of possible values (9, 10, 15, 18, 30, 45, 90, 180, 361). If a value other than these values is
requested, an N_| NVALI D_ARGUMENT result will be returned. Fewer parameters than 361 cause the
sensor to return the request amount of measurements distributed evenly across the 180 degree view-
ing angle (e.g. for a Request edPoi nt s of 10, the measurements will be 18 degrees apart.)

m Readi ngs - The set of sensor readings in millimeters with the Oth element in the array being the first,
rightmost reading. That is, the sensor takes measurements in order from right to left with respect to
the sensor.

m St at usFl ags - Contains status states for each entry in the Readi ngs array. Will eventually be used
to indicate if a reading violated the safe or warning fields, and various other possible conditions. Not
used in 1.0.

m Sunmar yFl ags - Contains status flags applicable to the entire set of readings. e.g. will indicate if any
of the readings violated the safe field. Not used in 1.0.

m Ti neSt anp - The time at which the most current laser scan took place.

m Dat aActi ve - If this is set to a TRUE value, this structure will be updated when calls to the client
library are made.

m Ti nestanpActi ve - If thisis set to a TRUE value, the TimeStamp field will be updated when calls to
the client library are made.

EXAMPLES

N_Get S550. ¢

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{

}

struct N_RobotState *state;
struct N_S550 *S550;
short i;

N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

state = N_GetRobotState(1);
S550 = &state->S550Set.S550[0];

while (1)

{
N_GetS550(1, 0);

printf(“Front Reading for S550 0: %d\n”, S550->Readings[89]);
}
N_DisconnectRobot(1);
exit(0);

72

SEE ALSO
N Get State

73

N_GETSONAR

NAME
N_Cet Sonar
PURPOSE

To fill the N_Robot St at e Structure with range data from the sonar proximity sensors.

SYNTAX
i nt N_Get Sonar (1 ong Robot | D);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

This command retrieves range data from the sonar proximity sensors and stores them in the
N_Sonar Cont rol | er field of N_Robot St at e.

The sonar controller structure holds all the configuration data that is valid for all the sonar sets on the
robot. Sonar sets are groups of sonar that act together. For instance, a firing order can be defined among
the sonar of a given set. The sonar controller structure has an array of N_Sonar Set structures, each
describing one particular set.

The Nomad 200 has one set of 16 sonar, going counterclockwise from 0 to 15, with 0 in front.

The XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door for a total of six sets:

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set2,3

struct N _Sonar Controll er

{
N_CONST unsi gned i nt Sonar Set Count ;

74

struct N_Sonar Set Sonar Set [N_MAX SONAR_SET_COUNT] ;
BOOL Sonar Paused,;

1
The configuration data used globally by all the sonar sets on the robot are:
m Sonar Set Count : the number of sonar sets in the controller.

The N_Sonar Set structure is defined as follows:

struct N_Sonar Set

{
unsigned int FiringOrder[N_MAX SONAR COUNT + 1];
| ong FiringDel ay;
| ong Bl anki ngl nterval ;
BOOL Dat aActi ve;
BOOL Ti meSt anpActi ve;
N_CONST unsi gned int Sonar Count;
struct N _Sonar Sonar[N_MAX SONAR_COUNT] ;

It contains an array Sonar of sonar structures (one per sonar transducer in the set), plus a number of con-
figuration parameters. The configuration parameters are:

m FiringOder:an array of sonar indices terminated by N_END_SONAR_FI RI NG_ORDERif the length
of the array is less than the Sonar Count .

m FiringDel ay: delay in milliseconds between two consecutive sonar firings.

m Bl anki ngl nt er val : the time in milliseconds to wait after a sonar sensor has fired before the sensor
begins to listen. This is currently not implemented on the XR4000 Release 1.0.

m Dat aActi ve: set to a TRUE value if the sonar data is to be updated for this set.

m Ti meSt anpActi ve: set to a TRUE value if the time (time of acquisition of the sonar range) is to be
updated for this set.

m Sonar Count : number of sonars in this set.
The N_Sonar structure contains the sensor readings:

struct N_Sonar

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;

};

The values defined for each sonar are:

m Readi ng: the distance measurement of the sensor in millimeters.

m Ti neSt anp: the time that the measurement took place in milliseconds.
EXAMPLES

N_Cet Sonar. c

#i ncl ude <stdi o. h>
#i ncl ude "Nclient.h"

#def i ne SCHEDULER_HOSTNAME "f at boy"

#defi ne SCHEDULER_PORT 7073

int main()

{
struct N RobotState *state;
struct N_Sonar *sonar;
short i;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);

sonar = state->SonarController.SonarSet[0]. Sonar;
whi | e(1)
{

N Get Sonar (1) ;

printf("SonarSet 0: ");

for (i =0; i < 8; i++)
printf("% ", sonar[i].Reading);

printf("\n");

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO
N _Get Sonar Confi guration, N GetState

75

76

N_GETSONARCONFIGURATION

NAME
N_Cet Sonar Confi gurati on
PURPOSE

To fill the N_Robot St at e Structure with configuration data from the sonar proximity sensors.

SYNTAX
i nt N_Get Sonar Confi guration(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERRCR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was closed since the last client call.

UPDATED GLOBALS
N _Robot St ate
DESCRIPTION

This command retrieves the sonar configuration from the robot and updates the N_Robot St at e Struc-
ture.

The sonar controller structure holds all the configuration data that is valid for all the sonar sets on the
robot. Sonar sets are groups of sonar that act together. For instance, a firing order can be defined among
the sonar of a given set. The sonar controller structure has an array of N_Sonar Set structures, each
describing one particular set.

The Nomad 200 has one set of 16 sonar, going counterclockwise from 0 to 15, with 0 in front.

The XR4000 has 3 doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door for a total of six sets:

Set 0 = top set on front door (sensor #0-7)
Set 1 = bottom set on front door (sensor #0-7)
Set 2 = top set on left door (sensor #0-7)

Set4, 5 Set 3 = bottom set on left door (sensor #0-7)
Set 4 = top set on right door (sensor #0-7)
Set 5 = bottom set on right door (sensor #0-7)

Set 2,3

struct N _Sonar Controll er

{
N_CONST unsi gned i nt Sonar Set Count ;

77

struct N_Sonar Set Sonar Set [N MAX SONAR _SET_COUNT] ;
BOOL Sonar Paused,;

1
The configuration data used globally by all the sonar sets on the robot are:
m Sonar Set Count -- the number of sonar sets in the controller.

The N_Sonar Set structure is defined as follows:

struct N_Sonar Set

{
unsi gned int FiringOder[N.MAX_ SONAR COUNT + 1];
| ong FiringDel ay;
| ong Bl anki ngl nterval ;
BOOL Dat aActi ve;
BOOL Ti meSt anpActi ve;
N_CONST unsi gned i nt Sonar Count;
struct N _Sonar Sonar[N_MAX_SONAR _COUNT] ;

It contains an array Sonar of sonar structures (one per sonar transducer in the set), plus a number of con-
figuration parameters. The configuration parameters are:

m FiringOrder:an array of sonar indices terminated by N_END_SONAR_FI RI NG_ORDERif the length
of the array is less than the Sonar Count .

m FiringDel ay -- delay in milliseconds between two consecutive sonar firings.

m Bl anki ngl nt erval --the time in milliseconds to wait after a sonar sensor has fired before the sensor
begins to listen. This is currently not implemented on the XR4000 Release 1.0.

m Dat aActi ve: set to a TRUE value if the sonar data is to be updated for this set.

m Ti meSt anpActi ve: set to a TRUE value if the time (time of acquisition of the sonar range) is to be
updated for this set.

m Sonar Count : number of sonars in this set.
The N_Sonar structure contains the sensor readings:

struct N_Sonar

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;

};

The values defined for each sonar are:

m Readi ng: the distance measurement of the sensor in millimeters.

m Ti neSt anp: the time that the measurement took place in milliseconds.
EXAMPLES

N_Get Sonar Confi guration. c

#i ncl ude <stdi o. h>
#i nclude "Nclient.h"

#def i ne SCHEDULER_HOSTNAME "f at boy"
#def i ne SCHEDULER_PORT 7073

78

int main()

{

struct N RobotState *state;
struct N _Sonar Set *sonar_set;
short i;

N_InitializeCient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
sonar _set = &state->Sonar Controller. SonarSet[0];

N_Get Sonar Confi guration(1l);

printf("Configuration of Sonar Set 0\n");
printf("Data Active: % Tine Stanmp Active: 9%\n",

sonar _set->DataActive ? "Yes" : "No",
sonar _set - >Ti neSt anpActive ? "Yes" : "No");
printf("Firing order: ");

i = 0;
whil e (sonar_set->FiringOrder[i]!=N_END SONAR FI RI NG_ORDER)
{

printf("%l ", sonar_set->FiringOder[i]);

i +=1;

printf("\n");
}
N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO

N_Get Sonar, N_Set Sonar Configuration, N CetState

N_GETSTATE

NAME
N Cet State
PURPOSE

To fill the N_Robot St at e Structure with data from the robot sensors.

SYNTAX
int N GetState(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

N_Cet St at e is the equivalent of doing all gets except for N_Get Ti ner , which must be called explicitly
for an update.

The N_Robot St at e Structure is the repository used in all data exchanges between a user program and a
Robot Process. Each time a user program connects to a Robot, an N_Robot St at e Structure is created to
receive data from the robot. There are as many N_Robot St at e Structures as there are robots connected to
the user program.

The N_Robot St at e Structure is defined in Ncl i ent . h h as:

struct N _Robot State
{
N_CONST | ong Robot | D;
N_CONST char Robot Type;
struct N_Integrator |ntegrator;
struct N _Axi sSet AxisSet;
struct N LiftController LiftController;
struct N _Joystick Joysti ck;
struct N _Sonar Controll er SonarController;
struct N InfraredController InfraredController;
struct N _BunperController BunperController;
struct N _Conpass Conpass;
struct N _Laser Set Laser Set;
struct N_Sb550Set Sb50Set;
struct N BatterySet BatterySet;
struct N_Tiner Tiner;

79

80

EXAMPLES

N GetState.c

#i ncl ude <stdi o. h>
#include "Nclient.h"

#defi ne SCHEDULER_HOSTNAME "f at boy"
#defi ne SCHEDULER_PORT 7073

int main()

{

struct N RobotState *state;
struct N _Sonar Set *sonar_set;
short i;

N_InitializeCient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N_Get Robot State(1);
N GetState(l);
printf("Got all robot data in local state structure\n");

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO

None

81

N_GETTIMER

NAME
N _Get Ti mer
PURPOSE

To get the current timeout setting of the robot and/or to get the master clock value.

SYNTAX
int N _GetTinmer(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS

N _Robot St at e

DESCRIPTION

This function reads the current timeout setting of the robot and updates the N_Robot St at e Structure.

struct N_Ti ner

{

| ong Ti neout;

unsi gned | ong Ti ne;
s
Ti meout is the timer threshold, after which the base motors will be turned off in units of milliseconds. For
safety reasons, the user cannot set the Ti meout parameter to exceed 1500 milliseconds.

Ti e is the robot’s master reference clock and represents the amount of time the robot has been powered
up. Both parameters are in units of milliseconds.

EXAMPLES
N GetTinmer.c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_Timer *timer;
short i;

N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);

82

N_Connect Robot (1) ;

N_Get Robot State(1);
&(st ate->Ti mer);

state
timer

N GetTimer(1);
printf(“Timeout is currently set to %d seconds\n”, timer->Timeout);

N_DisconnectRobot(1);
exit(0);

}

SEE ALSO

None

83

N_INITIALIZECLIENT

NAME
N Initializedient
PURPOSE

To initialize the communication with the scheduler.

SYNTAX

int N.InitializeCient(const char *schedul er _host nane,
unsi gned short schedul er _socket);

ARGUMENTS

const char *schedul er host nane - hostname or IP address
unsi gned short schedul er _socket - socket number

RETURNED VALUE
None

UPDATED GLOBALS
None

DESCRIPTION

This function initializes the client library and specifies the hostname and port number of the scheduler. A
scheduler is required whenever there are more than two (real or simulated) robots in the application. As a
special case, when there is only one real robot, N I niti al i zed i ent should be called with the real
robot’s hostname and listener socket.

EXAMPLES
N Ilnitializedient.c

#i ncl ude <stdi o. h>
#i nclude "Nclient.h"

#def i ne SCHEDULER_HOSTNAME " f at boy"
#def i ne SCHEDULER_PORT 7073

int main()

{

printf("Initializing the client with schedul er on nmachi ne %,
port %\ n", SCHEDULER HOSTNAME, SCHEDULER PORT);

N Initializedient(SCHEDULER HOSTNAMVE, SCHEDULER PORT);
N _Connect Robot (1) ;

/* Sonething useful... */

N_Di sconnect Robot (1) ;
exit(0);

84

SEE ALSO

None

85

N_RETRACTLIFT

NAME
N RetractLift

PURPOSE

To retract the Lift Mechanism into the robot of the robot to prevent damage to the Lift Mechanism and to
simplify path planning.

SYNTAX

int N RetractLift(long RobotlID);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function initiates retracting the Lift Mechanism which may be in a deployed state.

EXAMPLES
N RetractLift.c

#i ncl ude <stdi o. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_LiftController *lcont;
N_InitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

[* zero lift -- but only if necessary */
N_ZerolLift(1, FALSE);
N_RetractLift(1);
* wait for lift to retract */
do
{
state = N_GetRobotState(1);
Icont=&(state->LiftController);

}

while (Icont->InProgress);

86

N_Di sconnect Robot (1) ;
exit(0);
}

SEE ALSO

N RetractLift

87

N_SETAXES

NAME
N_Set Axes
PURPOSE

To move the robot based on the axis parameters in the N_Robot St at e structure.

SYNTAX
i nt N_Set Axes(l ong Robot|D);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.

N_I NVALI D_ARGUMENT - invalid argument.

N_ROBOT_NOT_FOUND - robot not found.

N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.
N_UNKNOWN_ERROR - Nrobot was not able to communicate with the motor device.
N_AXES_ NOT_READY - The axes are not free to move. Check the Status field.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

This function updates the motor axes to reflect the current axis parameters in the N_Axi sSet structure of
N_Robot St at e and cause the desired movement.

struct N_Axi sSet

{
BOOL d obal ;
unsi gned char St at us;
N_CONST unsi gned int Axi sCount;
struct N _Axis Axi s[N.MAX_AXI S_COUNT] ;
I

m {d obal : Only available on XR4000 series robots. When this parameter is set to a TRUE value, it puts
the mobile base axes in “global” or “world” mode after which all control of the base axes is with
respect to the fixed global reference frame. The global reference frame is set when the robot is powered
up and or when N_Set | nt egr at edConf i gur ati on is called. While in @ obal mode (G o-
bal =TRUE), movement of the rotation axis will not change the direction of the x or y axis movement.
For example, simultaneous movement of the Rotation and Y axes will cause a pirouette (motion in a
straight line while spinning.)

When this parameter is set to FALSE, the mobile base axes are controlled with respect to a “local” or
“joint” reference frame. For example, simultaneous movement of the Rotation and Y axes will cause
the robot to move in a circle -- that is, the robot will constantly move forward, but rotation causes the
Y direction to change, producing a circle.

88

m St at us: one of the following values:
N_AXES_READY: This status indicates that the axes are available for movement.
N_JOYSTI CK_| N_USE: This status indicates that the base is being controlled via joystick.
N_ESTOP_DOWN: This status indicates that one or more of the emergency stop buttons is
depressed, preventing the robot from moving.

struct N Axis {

BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
BOOL Updat e;

unsi gned | ong Ti meSt anp;
char Mode;

| ong DesiredPosition;

| ong DesiredSpeed;

| ong Accel erati on;

l ong Traj ectoryPosition;
| ong TrajectoryVel ocity;
[ong Actual Position;

[ong Actual Vel ocity;
BOOL | nProgress;

l ong TrajectoryVel ocity;

Dat aAct i ve: A value for this parameter causes the values in this structure to be updated -- namely
Mode, Desi r edPosi ti on, Desi r edSpeed, Accl eration, Traj ect oryPosi ti on, Tr aj ect o-
ryVel oci ty, Act ual Posi tion, Actual Vel ocity, | nProgress,and Traj ectoryVel ocity.

Ti meSt anpAct i ve: A TRUE value for this parameter causes the TimeStamp parameter to be updated.

Updat e: A TRUE value for this parameter causes the input values (Desi r edSpeed, Desi r edPosi -
tion, and Accel er ati on) to be loaded into the set of working values for this axis when a call to
N_Set Axes() is made. The Updat e parameter allows one or more axes to be loaded with new input
values simultaneously.

Ti meSt anp: the time value in milliseconds that the axis values were measured.
Mbode: One of the following possible modes:
N_AXI S_PGCSI TI ON_RELATI VE: Specifies that the axis move relative to the current position.

N_AXI S_PCsSI TI ON_ABSOLUTE: Specifies that the axis move to an absolute position with respect to
the absolute zero location of the axis.

N_AXI S_VELOCI TY: Specifies that the axis move with a constant velocity.
N_AXI S_STOP: Specifies that the axis should decelerate to zero.

Desi r edPosi t i on: Specifies the desired endpoint position of the axis. The units are in millimeters

for translational axes and milliradians for rotational axes. When Mode is set to

N_AXI S POSI TI ON_RELATI VEor N AXI S _PCSI TI ON_ABSOLUTE this specifies the endpoint posi-
tion relative to the current position or the absolute position, respectively. This parameter is not used

when Mode isset to N_AXI S_VELQCI TY. This parameter can be positive or negative.

Desi r edSpeed: This specifies the desired speed at which to move to the Desi r edPosi t i on, or the
constant speed at which to move if Mode issetto N AXI S VELQOCI TY. The units are in millimeters/
second for translational axes and milliradians/second for rotational axes. This parameter can only be
positive.

89

m Accel er ati on: Constrains the rate at which the speed can change. The units are in millimeters/
second: for translational axes and milliradians/second: for rotational axes. This parameter can only
be positive.

m Traj ectoryPosition:Provides the current position of the trajectory generator.
m Traj ectoryVel ocity: Provides the current velocity of the trajectory generator.

m Act ual Posi ti on: Provides the actual position of the axis. The value of this field is based on the set-
ting of the Global field in N_Axi sSet . If in Joint mode (G obal =FALSE), this field provides the joint
position of this axis. If in @ obal mode (@ obal =TRUE), this field provides the position of the axis in
a global reference frame. In G obal mode, this value is equivalent to the corresponding field in the
N_I nt egr at or structure.

m Act ual Vel oci ty: Provides the actual measured velocity of the axis. This value, like Act ual Posi -
ti on is based on the setting of the Global field in N_Axi sSet . In G obal mode (3 obal =TRUE), this
field provides a value that is with respect to a global reference frame. In Joint mode, (3 obal =FALSE)
this field provides a value that is with respect to the local reference frame.

m | nProgress: Provides a boolean value that informs the user that an axis is currently moving.

The interpretation and range for the axes and their values according to the robot type are given below:

EXAMPLES
Nomad 200 XR4000
AxisOis Translation X
Axis1lis Steering Y
AXis2is Turret Theta
Axis 0 velocity range [-609mm/s, 609mm/s] [-1500mmy/s, 1500mm/s]
Axis 1 velocity range [-785mRad/s, 785mR/q] [-1500mmy/s, 1500mm/s]
Axis 2 velocity range [-785mRad/s, 785mRad/s] [-5000mRad/s, 5000mRad/s]
Axis 0 acceleration range [Omm/s?, 762mm/s?] [Omm/s?, 1500mn/s?]
Axis 1 acceleration range [OmRad/s?, 872mRad/s?] [OmmV/s?, 1500mmn/s?]
AXis 2 acceleration range [OmRad/s?, 872mRad/s?] [OmRad/s?, 5000mRad/s?]
N_Get Axes. c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{

struct N_RobotState *state;

90

struct N Axis *axis;
struct N _AxisSet *axisSet;
i nt inProgress;

N_InitializeCient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N _Get Robot State(1);
axi sSet =&(st at e- >N_Axi sSet) ;
axi s = &(Axi sSet - >Axi s[N_YTRANSLATI ON]) ;

axi sSet - >d obal =FALSE; /* local axis node */
axi s- >Dat aAct i ve=TRUE;

axi s- >Mode=N_AXI S _PCSI TI ON_RELATI VE;

axi s- >Desi r edSpeed=500; [* mm's */

axi s->accel erati on=500; /* mmis/s */
axi s- >Desi r edPosi ti on=1000; [* mm*/

axi s- >Updat e=TRUE;
N_Set Axes(1);

/* nove 1 meter forward and stop */
do
{
N_Get Axes(1);
i nProgress=axi s- >l nProgress;
}
whi | e(i nProgress);
N_Di sconnect Robot (1) ;
exit(0);
}

SEE ALSO
N_Get Axes

91

N_SETINTEGRATEDCONFIGURATION

NAME
N_Set I nt egr at edConfi gurati on
PURPOSE

To set the integrated configuration values currently in the N_Robot St at e Structure.

SYNTAX
int N_SetlntegratedConfiguration(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.

N_ROBOT_NOT_FOUND - robot not found.

N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.
N_UNKNOWN_ERROR - Nrobot was not able to communicate with the device.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function sets the integrated configuration values of the robot with the values currently in the
N_I nt egr at or field of the N_Robot St at e.

The N_I nt egr at or structure contains the geometric configuration of the robot with respect to a globally
fixed coordinate frame.

struct N_Integrator

{
BOOL Dat aActi ve;

BOOL Ti meSt anpActi ve;
| ong x;

| ong v;
| ong Steering;

| ong Rotati on;
unsi gned | ong Ti meSt anp;

1
m The Dat aAct i ve is set to TRUE if the fields in this structure are to be updated -- namely x, y, St eer -
i ng and Rot at i on.

m TheTi neSt anpAct i ve is set to TRUE if the TimeStamp field is to be updated.

m The x andy coordinates represent the integrated coordinates of the reference point of the robot (which
is the center of the base for both the Nomad 200 and the XR4000) in the global reference frame. These
values are expressed in millimeters. The reference frame is by default aligned with the position of the
robot at startup.

92

Reference Frames

Nomad 200 Nomad XR4000

m The St eeri ng angle represents the orientation of the wheels for the Nomad 200, with respect to the
“X” axis of the reference frame. For the XR4000, the value is equal to Rot at i on. Angle units are mil-
liradians.

m Rotation: Forthe Nomad 200, this is the angle in milliradians of the turret with respect to the “X”
axis of the reference frame. For the XR4000, this is the angle in milliradians of the body with respect to
the global reference frame.

m The Ti neSt anp is the time at which the integrated values were computed. It is expressed in milliseconds.

EXAMPLES

N _Set | nt egrat edConfi guration.c

#i ncl ude <stdi o. h>
#include "Nclient.h"

#def i ne SCHEDULER HOSTNAME " f at boy"
#def i ne SCHEDULER _PORT 7073

int main()

{

struct N _Robot State *state;

struct N Integrator *configuration;

N Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state = N Get Robot State(1);
configuration =&(state->lntegrator);

configuration->x = 0;
configuration->y = 0;
configuration->z = 0;

configuration->Steering = 0;
configuration->Rotation = 0;

N _Set | nt egrat edConfi guration(1);

printf("Integrated Configuration set to: x % y % z %
Steering % Rotation %l\n",
configuration->Xx,
configuration->y,
configuration->z,
configuration->Steering,
configuration->Rotation);

N_Di sconnect Robot (1) ;
exit(0);
}

SEE ALSO

N_Get I nt egrat edConfi guration

93

94

N_SETJOYSTICK

NAME
N_Set Joysti ck
PURPOSE

To move the robot based on the parameters in the RobotState structure.

SYNTAX
i nt N_SetlntegratedConfiguration(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERRCR - success.

N_ROBOT_NOT_FOUND - robot not found.

N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.
N_I NVALI D_ARGUNMENT - one of the entries in the N_Joystick structure was invalid.
N_UNKNOWN_ERROR - Nrobot was not able to communicate with the device.

UPDATED GLOBALS
None
DESCRIPTION

This function sends the values in the N_Joystick substructure of the state structure to the robot, in order to
move the robot as though the user were using the joystick. The N_Joystick structure has fields for the two
joystick axes (as well as a potential third one in the future) as well as three buttons.

struct N_ Joystick
{
doubl e X;
doubl e Y;
doubl e Thet a;
BOOL Butt onA,;
BOOL ButtonB;
BOOL ButtonC,

s

m X, Y, and Theta are axis values and must fall in the range [-1.0, 1.0].

m The three Button parameters are set to TRUE to indicate that the button is pressed. If none are set to
TRUE, this indicates that the joystick has been released.

N_SETLIFT

NAME
N_Set Li f t

PURPOSE

To move the Lift and Grip axes of the Lift Mechanism.

SYNTAX

int N SetLift(long RobotlD);
ARGUMENTS

| ong Robot | D - robot identification number.
RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS

None

DESCRIPTION

This function initiates movement of the Lift and Grip axes of the Lift Mechanism after the contents of the
Li ft Control | er structure of N_Robot St at e have been modified to reflect the desired Lift Mechanism
motion.

The Li ft Control | er structure has the following definition:

struct N LiftController
{
BOOL Depl oyed;
BOOL | nProgress;
struct N LiftAxis Axi s[N LI FT_AXI S COUNT];
s
<toc 2>

The fields are described as follows:

m Depl oyed: provides information on whether the Lift Mechanism is fully deployed or not. A TRUE
value indicates that the Lift mechanism is fully deployed.

m | nProgress:aTRUEvalue in this field indicates that the Lift Mechanism is currently being retracted,
deployed, or zeroed (i.e. duetoacall to N _Depl oyLi ft,N RetractLift,or N ZeroLi ft). While
this field is set, no motion commands to the Lift mechanism are accepted.

m AXi s:an array that contains the motion parameters for the two controllable axes: the Lift axis and
Grip axis. The two possible array indices are respectively N_LI FT and N_GRI P.

The axis parameters are contained in the N_Li f t Axi s structure, which is defined as:

struct N LiftAxis

{
BOOL Dat aActi ve;

95

BOOL Ti meSt anpActi ve;
BOOL Updat e;

unsi gned | ong Ti meSt anp;
char Mode;

| ong St at us;

| ong DesiredPosition;

| ong DesiredVel ocity;

| ong DesiredAccel erati on;
| ong MaxMot or;

| ong Position;

| ong Vel ocity;

m Dat aActi ve: a TRUE value for this field causes the parameters of this structure to be updated with
each call to N_Get Axes -- namely Mode, St at us, Desi redPosi ti on, Desi redVel ocity, Accel -
eration, MaxMot or, Posi ti onand Vel ocity.

m Ti meSt anpActi ve: a TRUE value for this field causes the Ti meSt anp field to be updated with each
call to N_Get Axes.

m Updat e: a TRUE value for this field causes the motion parameters to be loaded into the motor control-
ler for execution upon calling N_Set Axes() .

m Ti neSt anp: contains the time in milliseconds that the motion parameters were obtained.
m Mode: contains the movement mode for the axis. It can be set to one of the following possible modes:

N_LI FT_PGCSI TI ON_RELATI VE: causes the axis to move to a position relative to the current position
as specified by the Desi r edPosi ti on field.

N LI FT_PGCsSI TI ON_ABSOLUTE: causes the axis to move to an absolute position (see table above) as
specified by the Desi r edPosi ti on field.

N LI FT_VELQCI TY: causes the axis to move at a velocity specified by the Desi r edVel oci t y field.

m St atus: provides a bitmap of possible errors. One or more of these bits will be set if an error occurs
during a movement. To test for a particular error, the value or result can be “ored” with the error bits
described below:

N_LI FT_PGCS_LI M T: indicates the positive limit switch has been reached for the axis. This should
never happen, as the software limits travel to never traverse the positive limit of neither the Grip nor
Lift axes after the Lift Mechanism is zeroed.

N LI FT_NEG LI M T: indicates the negative limit switch has been reached for the axis. This should
never happen for the Lift axis, but the Grip axis when fully closed depresses the gripper’s negative
limit switch.

N_LI FT_MOTI ON_ERROR: indicates that the motion was unable to complete. This is often due to an
obstacle in the desired path of the axis.

N_LI FT_ESTOP: indicates that the motion is not possible because one or more of the emergency stop
switches is depressed.

N_LI FT_CANNOT_MOVE: indicates that the motion is not possible because the Lift Mechanism is not
zeroed or not deployed.

m DesiredPosi ti on: specifies the desired endpoint position of the axis in units of 0.1 mm.. The posi-
tion is either relative to the current position or absolute with respect to the zero position as specified
by the Mode field.

m DesiredVel oci ty: specifies the desired velocity at which the axis should move in units of 0.1 mm/s.

m DesiredAccel erati on: specifies the desired acceleration at which the axis should move in units of
0.1 mm/s-.

m MaxMot or : specifies the percentage of available torque to use for the axis. The possible values range
between 0 and 100, where 100 specifies the default of 100% available torque. For example, this is useful
to set for the gripper when picking up fragile objects.

m Posi ti on: provides the current absolute position of the axis in units of 0.1mm.

m Vel oci ty: provides the current velocity of the axis in units of 0.1mm/s.

EXAMPLES
N SetLift.c

#i ncl ude <stdi o. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_LiftController *lcont;

N_lInitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

[* zero lift -- but only if necessary */
N_ZerolLift(1, FALSE);

[* Lift Mechanism must be deployed in order to move */
N_DeployLift(1);
[* wait for lift to deploy */
do
{
state = N_GetLift(1);
Icont=&(state->LiftController);
}
while (Icont->InProgress);
Icont->Axis[N_GRIP].MaxMotor=50; /* set the gripper torque to 50% */
Icont->Axis[N_GRIP].Mode=N_LIFT_POSITION_ABSOLUTE; /* move the gripper to
the specified absolute position */
Icont->Axis[N_GRIP].DesiredVelocty=300; /* move at 30 mm/s */
Icont->Axis[N_GRIP].DesiredAcceleration=300; /* accelerate at 30 mm/s/s */
Icont->Axis[N_GRIP].DesiredPosition=0; /* move the gripper to the zero posi-
tion (absolute) -- closed */
N_SetLift();

Icont->Axis[N_GRIP].DataActive=TRUE; /* turn on data active flag */
/* wait until finished */
do

N_GetLift(1);

98

}
while (lcont->Axi sS[N.GRIP]. Velocity !'= 0);
N_Di sconnect Robot (1) ;
exit(0);
}

SEE ALSO
N Get Lift

N_SETSONARCONFIGURATION

NAME
N_Set Sonar Conf i gurati on
PURPOSE

To set the configuration of the sonar proximity sensors.

SYNTAX
i nt N_Set Sonar Confi guration(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROR - success.
N_NO ROBOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function configures the sonar sensor proximity sensors the values currently in the N_Robot St at e
Structure.

The sonar controller structure holds all the configuration data that is valid for all the sonar sets on the
robot. Sonar sets are groups of sonar that act together. For instance, a firing order can be defined among
the sonar of a given set. The sonar controller structure has an array of N_Sonar Set structures, each
describing one particular set.

The Nomad 200 has one set of 16 sonar, going counterclockwise from 0 to 15, with 0 in front.

The XR4000 has three doors that go counterclockwise and there are two (sonar/infrared/bumper) sets per
door for a total of six sets:

Set 0 = top set on front door (sensor #0-7)

Set 1 = bottom set on front door (sensor #0-7)

Set 2 = top set on left door (sensor #0-7)
Set4,5 Set 3 = bottom set on left door (sensor #0-7)

Set 4 = top set on right door (sensor #0-7)

Set 5 = bottom set on right door (sensor #0-7)

Set2,3

99

100

struct N _Sonar Controll er

{
N_CONST unsi gned i nt Sonar Set Count ;

struct N_Sonar Set Sonar Set [N MAX SONAR_SET_COUNT] ;
BOOL Sonar Paused,;

b

The configuration data used globally by all the sonar sets on the robot are:
m Sonar Set Count : the number of sonar sets in the controller.
The N_Sonar Set structure is defined as follows:

struct N_Sonar Set

{
unsigned int FiringOrder[N_MAX SONAR COUNT + 1];
| ong FiringDel ay;
| ong Bl anki ngl nterval ;
BOOL Dat aActi ve;
BOOL Ti meSt anpActi ve;
N_CONST unsi gned int Sonar Count;
struct N _Sonar Sonar[N_MAX SONAR_COUNT] ;

It contains an array Sonar of sonar structures (one per sonar transducer in the set), plus a number of con-
figuration parameters. The configuration parameters are:

m FiringOder:an array of sonar indices terminated by N_END_SONAR_FI RI NG_ORDERif the length
of the array is less than the Sonar Count .

m FiringDel ay: delay in milliseconds between two consecutive sonar firings.

m Bl anki ngl nt er val : the time in milliseconds to wait after a sonar sensor has fired before the sensor
begins to listen. This is currently not implemented on the XR4000 Release 1.0.

m Dat aActi ve: set to a TRUE value if the sonar data is to be updated for this set.

m Ti meSt anpActi ve: set to a TRUE value if the time (time of acquisition of the sonar range) is to be
updated for this set.

m Sonar Count : number of sonars in this set.

The N_Sonar structure contains the sensor readings:

struct N_Sonar

{
| ong Readi ng;
unsi gned | ong Ti meSt anp;
b

The values defined for each sonar are:
m Readi ng: the distance measurement of the sensor in millimeters.

m Ti meSt anp: the time that the measurement took place in milliseconds.

101

EXAMPLES

N_Set Sonar Confi guration.c

#i ncl ude <stdi o. h>
#include “Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_SonarSet *sonar_set;
short i;

N_lInitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

state = N_GetRobotState(1);

sonar_set = &state->SonarController.SonarSet[0];
/* Always do this to initialize the local state structure
* with correct data */

N_GetSonarConfiguration(1);

sonar_set->DataActive = TRUE;
sonar_set->TimeStampActive = TRUE;

sonar_set->FiringOrder[0] = O;

sonar_set->FiringOrder[1] = 2;

sonar_set->FiringOrder[2] = 4;

sonar_set->FiringOrder[3] = N_END_SONAR_FIRING_ORDER;
N_SetSonarConfiguration(1);

printf(“Sonar Set 0 set to\n”);
printf(“Data Active: %s Time Stamp Active: %s\n”,
sonar_set->DataActive ? “Yes” : “No”,
sonar_set->TimeStampActive ? “Yes” : “N0”);
printf(“Firing order: “);
i=0;
while (sonar_set->FiringOrder[i]'=N_END_SONAR_FIRING_ORDER)
{
printf(“%d “, sonar_set->FiringOrderf[i]);
i+=1;
}
N_DisconnectRobot(1);
exit(0)
}

SEE ALSO

N_GetSonarConfiguration

102

N_SETTIMER

NAME
N_Set Ti mer
PURPOSE

To set the timeout period of the robot.

SYNTAX
int N_SetTinmer(long RobotlD);
ARGUMENTS

| ong Robot | D- robot identification number.

RETURNED VALUE

N_NO_ERROCR - success;
N_ROBOT_NOT_FOUND - robot not found;

UPDATED GLOBALS
N Robot St at e
DESCRIPTION

This function sets the timeout period of the robot, such that if the robot has not received a command from
the host for more than the timeout period, it will abort its current motion. This is a safety measure to pre-
vent the robot from continuing its motion without control if for some reason (crash, communication prob-
lem...) the robot does not receive any command at all.

struct N_Ti ner

{ | ong Ti nmeout;
| ong Ti ne;

i

Ti meout is the timer threshold, after which the base motors will be turned off in units of milliseconds. For

safety reasons, the user cannot set the Ti meout parameter to exceed 1500 milliseconds.

Ti e is the robot’s master reference clock and represents the amount of time the robot has been powered
up. Both parameters are in units of milliseconds.

EXAMPLES

N _Set Ti meout . c

#i ncl ude <stdi o. h>
#i ncl ude "Nclient.h"

#defi ne SCHEDULER HOSTNAME " f at boy"
#defi ne SCHEDULER PORT 7073
int main()
{
struct N RobotState *state;
struct N Tinmer *tiner;

10

short i;

N_Initializedient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

state
timer

N_Get Robot St at e(1) ;
&(st at e->Ti nmer) ;

timer->Ti meout = 10000;
N Set Tinmer (1);
printf("Tinmeout set to %d mlliseconds\n", tiner->Timeout);

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO
N _Get Ti mer

104

N_SPEAK

NAME
N_Speak
PURPOSE

To download a string of text for the speech card to speak.

SYNTAX
i nt N_Speak(long RobotlD, char *Text);
ARGUMENTS

unsi gned | ong Robot | D- robot identification number.
char *Text - text string the robot will speak.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call

UPDATED GLOBALS

None

DESCRIPTION

This function sends a text stream in characters to the robot’s voice synthesizer (if available) to let the robot
speak. Please refer to the voice synthesizer documentation for information about speech control characters.

EXAMPLES
N_Speak. c

#i ncl ude <stdi o. h>
#i nclude "Nclient.h"

#def i ne SCHEDULER HOSTNAME "f at boy"
#def i ne SCHEDULER _PORT 7073

int main()

{

struct N _Robot State *state;
struct N Tiner *tiner;
short i;

N_InitializeCdient(SCHEDULER HOSTNAME, SCHEDULER PORT);
N_Connect Robot (1) ;

N Speak(1l, "Hello World");

N_Di sconnect Robot (1) ;
exit(0);
}

SEE ALSO

None

10&

N_ZEROLIFT

NAME
N ZeroLi ft

PURPOSE

To “zero” the Lift Mechanism so the Lift Controller knows the position of the axes. If the Lift Mechanism is
not zeroed, motion commands initiated by N_Set Li f t () will not execute.

SYNTAX

int N ZeroLift(long RobotlD, BOOL Force);
ARGUMENTS

| ong Robot | D- robot identification number.

BOOL For ce - a boolean value that if passed as TRUE will cause the Lift Mechanism to perform the zero-
ing motions each time it is called, otherwise it will perform the zeroing motions once per boot cycle of the
robot.

RETURNED VALUE

N_NO_ERROR - success.
N_ROBOT_NOT_FOUND - robot not found.
N_CONNECTI ON_FAI LED - the socket was disconnected since the last client call.

UPDATED GLOBALS
N _Robot St at e
DESCRIPTION

When the robot is turned on, the position of the lift mechanism’s axes are not known. In order to control
the lift mechanism, the axis positions must be determined. This is done by “zeroing” the lift mechanism
with acallto N Zer oLi ft (). Only one call the N_Zer oLi ft is required for each boot cycle of the robot.
If the Lift Mechanism is not zeroed, motion commands initiated by N_Set Li ft () will not execute.

EXAMPLES
N ZeroLift.c

#i ncl ude <stdi o. h>
#include "Nclient.h”

#define SCHEDULER_HOSTNAME “fatboy”
#define SCHEDULER_PORT 7073

int main()

{
struct N_RobotState *state;
struct N_LiftController *Icont;
N_lInitializeClient(SCHEDULER_HOSTNAME, SCHEDULER_PORT);
N_ConnectRobot(1);

[* do not force -- only zero if necessary */
N_ZeroLift(1, FALSE);

106

}

/[* wait for lift to deploy */
do
{
state = N _Get Robot State(1);
| cont =&(state->LiftController);
}

whil e (I cont->lnProgress);

N_Di sconnect Robot (1) ;
exit(0);

SEE ALSO

N SetLift

	Nomad XRDev Software Manual
	Release 1.0
	Where can I get help?
	Where can I get software?
	Disclaimer and Warranty Information
	Conventions

	Contents
	Chapter 1: Getting Started
	OVERVIEW
	RELEASE 1.0 Contents
	A Simple Example

	Chapter 2: The XRDev Architecture
	Design Features
	Processes and Configurations

	Chapter 3: Nrobot
	Introduction
	xrdev configuration options
	Command line options
	Setup file options

	default sensor states
	adding new hardware
	troubleshooting

	Chapter 4: The Graphic User Interface
	Introduction
	Getting Started
	Command Line Options
	World Window
	World Menu Bar
	File Menu
	View Menu
	Panel Menu

	Robot Window
	Short Range Sensor
	Long Range Sensor
	Joystick
	Info Window

	Chapter 5: The Robot Language
	Introduction
	Commands
	Establishing Communication
	Timer Mechanism
	Timestamps
	The N_RobotState Structure
	Base Motion
	Holonomic Versus Nonholonomic
	Global and Joint modes
	Axis Modes
	Velocity Mode
	Position Modes

	The N_Axis and N_AxisSet Structures
	The Integrated Configuration
	Tactile Sensing
	Infrared Proximity Sensing
	Sonar Proximity Sensing
	Laser (Sensus 550)
	Power System
	Compass
	Voice Synthesizer
	Lift Mechanism

	Chapter 6: Nomad XR4000 Lift Mechanism Reference
	Introduction
	Zeroing
	Deploying and Retracting
	The LiftController Structure

	Chapter 7: Vision Reference
	Overview
	Sensus 450 Monochrome Vision
	Running a demo

	Sensus 460 Color Vision
	Running a simple demo

	Sensus 700 High Speed Color Vision System
	Demonstration program
	Using the RPC Library with the Sensus 700
	Introduction
	Examples
	The intrinsic rpc_table
	Intrinsic procedures called from the vision system
	Intrinsic procedures called from the host

	Compiling Sensus 700 code
	Sensus 700 video
	Miscellaneous notes
	The TMS320C44

	Chapter 8 - Programming Reference
	Quick Reference
	Communication Commands
	Base Motion Setting Commands
	Base Motion Parameters Retrieving Commands
	Lift Mechanism Motion Setting Commands
	Lift Mechanism Retrieving commands
	Sensing Parameters Setting Commands
	Sensing Parameters Retrieving Commands

	N_ConnectRobot
	N_DisconnectRobot
	N_DeployLift
	N_GetAxes
	N_GetBattery
	N_GetBumper
	N_GetCompass
	N_GetInfrared
	N_GetIntegratedConfiguration
	N_GetLift
	N_GetS550
	N_GetSonar
	N_GetSonarConfiguration
	N_GetState
	N_GetTimer
	N_InitializeClient
	N_RetractLift
	N_SetAxes
	N_SetIntegratedConfiguration
	N_Setjoystick
	N_SetLift
	N_SetSonarConfiguration
	N_SetTimer
	N_Speak
	N_ZeroLift

